首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1707篇
  免费   100篇
  国内免费   84篇
测绘学   90篇
大气科学   99篇
地球物理   453篇
地质学   882篇
海洋学   81篇
天文学   130篇
综合类   29篇
自然地理   127篇
  2024年   5篇
  2023年   13篇
  2022年   56篇
  2021年   64篇
  2020年   67篇
  2019年   78篇
  2018年   150篇
  2017年   130篇
  2016年   176篇
  2015年   81篇
  2014年   182篇
  2013年   172篇
  2012年   92篇
  2011年   103篇
  2010年   61篇
  2009年   73篇
  2008年   57篇
  2007年   39篇
  2006年   54篇
  2005年   30篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   18篇
  2000年   15篇
  1999年   6篇
  1998年   13篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有1891条查询结果,搜索用时 0 毫秒
11.
There is an emerging requirement for processing global navigation satellite system (GNSS) signals indoor where the signal is very weak and subjected to spatial fading. Typically, longer coherent integration intervals provide the additional processing gain required for the detection and processing of such weak signals. However, the arbitrary physical motion of the handset imputed by the user limits the effectiveness of longer coherent integration intervals due to the spatial decorrelation of the multipath-faded GNSS signal. In this paper, limits of coherent integration due to spatial decorrelation are derived and corroborated with experimental verification. A general result is that the processing gain resulting from direct coherent integration saturates after the antenna has moved through a certain distance, which for typical indoor propagation, is about half a carrier wavelength. However, a refined Doppler search coupled with a prolonged coherent integration interval extends this limit, which is effectively a manifestation of selective diversity.  相似文献   
12.
Geotechnical and Geological Engineering - The effects of diameter and location of drain pipes on the uplift force and exit hydraulic gradient for a gravity dam are investigated. A numerical model...  相似文献   
13.
With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings, crowd monitoring has taken a considerable attentions in many disciplines such as psychology, sociology, engineering, and computer vision. This is due to the fact that, monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents (e.g. sports). One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles (UAVs), because UAVs have the capability to acquiring fast, low costs, high-resolution and real-time images over crowd areas. In addition, geo-referenced images can also be provided through integration of on-board positioning sensors (e.g. GPS/IMU) with vision sensors (digital cameras and laser scanner). In this paper, a new testing procedure based on feature from accelerated segment test (FAST) algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions. The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order. A single pixel which takes the ranking number 9 (for FAST-9) or 12 (for FAST-12) was then compared with the center pixel. Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features. The results show that the proposed algorithms are able to extract crowd features from different UAV images. Overall, the values of Completeness range from 55 to 70 % whereas the range of correctness values was 91 to 94 %.  相似文献   
14.
Abstract. The production of the hymenosomatid crab Elamenopsis kempi was calculated for a period of 18 months from a subtidal area of the Garmat-Ali river, southern Iraq. The highest average individual somatic energy was attained in spring. Maximum population biomass and production were attained by the summer cohort and the minimum values were exhibited by the overwintering cohort. The fluctuations of the average population biomass were followed throughout the sampling period. Average total annual population production was 13.2 g DW · m-2· a-1 and the P/B ratio was 5.9. These values were compared with those of the most common crustaceans in the region.  相似文献   
15.
Ocean Science Journal - A storm surge is a complex phenomenon in which current, tide, and waves interact with each other. Even if the wind is the main force of driving the surge, waves and tide are...  相似文献   
16.
Monthly mesoscale eddy kinetic energy (EKE) per unit mass has been computed for four years, 1993-1996, from TOPEX altimeter data in the Indian Ocean. It ranges from 50 cm2/s2 to 2,700 cm2/s2 (about 4,000 cm2/s2 near the Somali region in a few months). In the Arabian Sea and the Bay of Bengal, regions of high energies associated with various current systems under the influence of monsoonal winds have been delineated. Monthly variation of EKE near the Somali region has been studied. In this region the maximum EKE per unit mass has been observed during August every year, with variations in magnitude from year to year. The mesoscale eddy kinetic energy computed from TOPEX altimeter-derived SSH during 1993-1996 is highest near the Somali region during the SW monsoon, due to formation of mesoscale eddies and also because of upwelling. In the Bay of Bengal, high eddy kinetic energy is seen toward the western side during nonmonsoonal months due to the western boundary current. In the South Indian Ocean, it is high at a few places in some of the months. A large part of the Indian Ocean exhibits low eddy kinetic energy (less than 300 cm2/s2) year-round.  相似文献   
17.
The ability of fuzzy logic algorithms to model relationships between stream flow and suspended sediment discharge was investigated using daily measurements of stream flow and suspended sediment discharge for the Escanaba River mouth station, situated on the shore of Lake Michigan and operated by the US Geological Survey. Three different configurations of inputs were applied, whereby the inputs were fuzzified into fuzzy subsets of variables by means of triangular membership functions. The relationships between inputs and suspended sediment discharge (output) were represented by a set of fuzzy rule expressed in IF–THEN format. The weighted average method served for defuzzification. The commonly used sediment rating curve was also applied to the data, and its performance compared with that of the three models by means of statistical analyses. For all three models, suspended sediment discharge predicted by the fuzzy logic algorithm was in satisfactory agreement with observations. Furthermore, the fuzzy logic algorithms performed better than the sediment rating curve, particularly at higher rates of suspended sediment discharge (in this study, more than 50  × 106 g/day). Considered collectively, the use of fuzzy logic algorithms is suggested as a simple and effective approach for better prediction of suspended sediment discharge, also for estuaries.  相似文献   
18.
Ali Can Takinaci   《Ocean Engineering》2006,33(17-18):2260-2269
A fairing method is presented for giving a good representation of ship model resistance test data, which in general tend to exhibit a scattered trend and need to be smoothed appropriately. One component of the test data originates from the frictional resistance and can be formulated smoothly. The second component is the wave resistance which exhibits a specific harmonic character with peaks and troughs. In this method, this component is modelled using suitable harmonic cosine terms for obtaining the best representation of the corresponding resistance data. The performance of the method is then tested on two example cases, using the characteristic parameters of the sample data as input during the smoothing process.  相似文献   
19.
Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile’s geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile’s geometrical behavior because piles which had the optimal operational degree of about 5° are more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs.  相似文献   
20.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号