首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   9篇
  国内免费   2篇
测绘学   7篇
大气科学   17篇
地球物理   19篇
地质学   54篇
海洋学   13篇
天文学   19篇
综合类   1篇
自然地理   12篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
51.
Groundwater coseismic transient anomalies are evidenced and characterized by modelling the mixing function F characteristic of the groundwater dynamics in the Ogeu (western French Pyrénées) seismic context. Investigations of water-rock interactions at Ogeu indicate that these mineral waters from sedimentary environments result from the mixing of deep waters with evaporitic signature with surficial karstic waters. A 3-year hydrochemical monitoring of Ogeu springwater evidences that using arbitrary thresholds constituted by the mean ± 1 or 2σ, as often performed in such studies, is not a suitable approach to characterize transient anomalies. Instead, we have used a mixing function F calculated with chemical elements, which display a conservative behavior not controlled by the precipitation of a mineral phase. F is processed with seismic energy release (Es) and effective rainfalls (R). Linear impulse responses of F to Es and R have been calculated. Rapid responses (10 days) to rainwater inputs are evidenced, consisting in the recharge of the shallow karstic reservoir by fresh water. Complex impulse response of F to microseismic activity is also evidenced. It consists in a 2-phase hydrologic signal, with an inflow of saline water in the shallow reservoir with a response delay of 10 days, followed by an inflow of karstic water with a response delay of 70 days, the amount being higher than the saline inflow. Such a process probably results from changes in volumetric strain with subsequent microfracturation transient episodes allowing short inflow of deep salted water in the aquifer. This study demonstrates that groundwater systems in such environments are unstable systems that are highly sensitive to both rainfall inputs and microseismic activity. Impulse responses calculation of F to Es is shown to be a powerful tool to identify transient anomalies. Similar processing is suggested to be potentially efficient to detect precursors of earthquakes when long time-series (5 years at least) are available in areas with high seismicity.  相似文献   
52.
There has been increasing attention over the last decade to the potential effects of glacier retreat on downstream discharge and aquatic habitat. This study focused on streamflow variability downstream of Bridge Glacier in the southern Coast Mountains of BC between 1979 and 2014, prior to and during a period in which the glacier experienced enhanced calving and rapid retreat across a lake‐filled basin. Here we combined empirical trend detection and a conceptual‐parametric hydrological model to address the following hypotheses: (1) streamflow trends in late summer and early autumn should reflect the opposing influences of climatic warming (which would tend to increase unit‐area meltwater production) and the reduction in glacier area (which would tend to reduce the total volume of meltwater generated), and (2) winter streamflow should increase because of displacement of lake water as ice flows past the grounding line and calves into the lake basin. In relation to the first hypothesis, we found no significant trends in monthly discharge during summer. However, applying regression analysis to account for air temperature and precipitation variations, weak but statistically significant negative trends were detected for August and melt season discharge. The HBV‐EC model was applied using time‐varying glacier cover, as derived from Landsat imagery. Relative to simulations based on constant glacier extent, model results indicated that glacier recession caused a decline in mean monthly streamflow of 9% in August and 11% in September. These declines in late‐summer streamflow are consistent with the results from our empirical analysis. The second hypothesis is supported by the finding of positive trends for December, January, and February discharge. Despite the modelled declines in late‐summer mean monthly streamflow, recorded discharge data exhibited neither positive nor negative trends during the melt season, suggesting that Bridge Glacier may currently be at or close to the point of peak water. Further analysis of the impact of lake‐terminating glaciers on downstream discharge is needed to refine the peak water model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
53.
The properties of streamlined glacial landforms and palaeo‐flow indicators in the valleys of Viðidalur, Vatnsdalur and Svínadalur in northern Iceland were quantified using spatial analyses. Drumlins and mega‐scale glacial lineations (MSGL) were visually identified using satellite imagery from Google Earth, the National Land Survey of Iceland (NLSI) Map Viewer and Landsat satellites, and using aerial photographs from the NLSI. A semi‐automated technique was developed using ENVI to determine regions in northern Iceland likely to contain streamlined landforms. The outlines of the identified landforms were manually delineated in Google Earth, and all analyses were conducted in ArcGIS using a 20 m digital elevation model (DEM) of Iceland from the NLSI. Smaller features such as flutes, grooves and striations were measured in the field. At least 543 drumlins and 90 MSGL were identified in the three valleys. Average elongation ratios for Viðidalur, Vatnsdalur and Svínadalur are 4.3:1, 5.2:1 and 6.7:1, respectively. The average density of streamlined landforms is 2.34 landforms per 1 km2. Striations and orientation data of the drumlins and MSGL demonstrate ice flow to the northwest into Húnaflói. Parallel conformity is higher in the valley of Svínadalur (9° standard deviation) than in Viðidalur (12°) and Vatnsdalur (16°). Packing values are generally higher in the centre of each valley. The properties of streamlined landforms in the valleys of Viðidalur, Vatnsdalur and Svínadalur support the presence of palaeo‐ice stream activity on northern Iceland. Palaeo‐ice streams flowed from these regions into Húnaflói, supplying ice to the margin of the Iceland Ice Sheet during the Last Glacial Maximum. These palaeo‐ice streams provide a mechanism for ice centres from the mainland of Iceland to reach the shelf‐slope break.  相似文献   
54.
The Chopf Member is a glauconitic, phosphate-bearing succession that occurs in the distal part of the Helvetic Alps (eastern Switzerland). The recent discovery of age-diagnostic ammonites within this horizon allows for its attribution to the lower part of the Gerhardtia sartousiana zone (middle Late Barremian). This new age corresponds to a maximal age for the onset of the Schrattenkalk Fm. in this area, and is coeval with the onset of the Urgonian facies in other parts of the western Tethyan realm. This new age allows also for a more precise dating of Late Barremian δ13C curves. To cite this article: S. Bodin et al., C. R. Geoscience 338 (2006).  相似文献   
55.
This study examines the lateral distribution of hydromorphy in the fine‐grained alluvial deposits of the Eocene Pondaung Formation, central Myanmar. Through detailed outcrop analysis and using a combined sedimentological and pedological approach, this study proposes a reconstruction of Pondaung overbank floodplain palaeoenvironments. The variations of hydromorphic features in the different overbank sub‐environments are then discussed and used to build a model of hydromorphic variability in alluvial deposits. Two main architectural associations with distinctive lithofacies and pedogenic features were identified, corresponding to different sub‐environments: heterolithic deposits and extensive mudstone successions. The heterolithic deposits display variegated fine‐grained lithofacies and contain poorly developed palaeosols with gley and vertic features, which are interpreted to reflect a seasonal wetlands landscape, developed in actively aggrading avulsion belts. Extensive mudstone successions with Vertisols that locally exhibit mukkara‐style pseudogley features are interpreted to represent a distal open‐forested environment. The palaeosols of both sub‐environments display dense local hydromorphic variations they are also characterized by a gradual shift from gley‐dominated to pseudogley‐dominated features with increasing distance from the avulsion belt. The clay‐dominated lithology of the floodplain parent material, which forms numerous subsurface permeability barriers, is shown to have acted as a fundamental control in limiting water‐table dynamics in coarse‐grained parts of the succession, thereby favouring hydromorphic variability. Palaeosol sequences of the Pondaung Formation contrast with the soil‐landscape associations described in other studies and provide an alternative model with which to account for the hydromorphic variability in poorly drained, alluvial soils. The model proposed as an outcome of this study demonstrates that hydromorphic variations can be dramatic in floodplains where permeability barriers are numerous. Further, the model stresses the importance of undertaking detailed lateral palaeosol analyses prior to making interpretations regarding hydromorphic variability.  相似文献   
56.
57.
58.
Imaging of the heliosphere is a burgeoning area of research. As a result, it is awash with new results, using novel applications, and is demonstrating great potential for future research in a wide range of topical areas. The STEREO (Solar TErrestrial RElations Observatory) Heliospheric Imager (HI) instruments are at the heart of this new development, building on the pioneering observations of the SMEI (Solar Mass Ejection Imager) instrument aboard the Coriolis spacecraft. Other earlier heliospheric imaging systems have included ground-based interplanetary scintillation (IPS) facilities and the photometers on the Helios spacecraft. With the HI instruments, we now have routine wide-angle imaging of the inner heliosphere, from vantage points outside the Sun-Earth line. HI has been used to investigate the development of coronal mass ejections (CMEs) as they pass through the heliosphere to 1 AU and beyond. Synoptic mapping has also allowed us to see graphic illustrations of the nature of mass outflow as a function of distance from the Sun – in particular, stressing the complexity of the near-Sun solar wind. The instruments have also been used to image co-rotating interaction regions (CIRs), to study the interaction of comets with the solar wind and CMEs, and to witness the impact of CMEs and CIRs on planets. The very nature of this area of research – which brings together aspects of solar physics, space-environment physics, and solar-terrestrial physics – means that the research papers are spread among a wide range of journals from different disciplines. Thus, in this special issue, it is timely and appropriate to provide a review of the results of the first two years of the HI investigations.  相似文献   
59.
60.
The ability to constrain the petrogenesis of multiple serpentine generations recorded at the microscale is crucial for estimating the extent and conditions of modern versus fossil serpentinisation in ophiolites. To address matrix bias effects during oxygen isotope analysis by SIMS, we present the first investigation analysing antigorite in the compositional range Mg# = 77.5–99.5 mole %, using a CAMECA IMS‐1280 secondary ion mass spectrometer. Spot‐to‐spot homogeneity is ≤ 0.5‰ (2s) for the new antigorite reference materials. The relative bias between antigorite reference materials with different Mg/Fe ratios is described by a second‐order polynomial, and a maximum difference in bias of ~ 1.8‰ was measured for Mg# ~ 78 to 100. We observed a bias up to ~ 1.0‰ between lizardite and antigorite attributed to their different crystal structures. Orientation effects up to ~ 1‰ were observed in chrysotile. The new analytical protocol allowed the identification of oxygen isotope zoning up to ~ 7‰ in serpentine minerals from two serpentinites recovered from an area of active serpentinisation in the Samail ophiolite. Thus, in situ analysis is capable of resolving isotopic heterogeneity that may directly reflect changes in the physical and chemical conditions of multiple serpentinisation events in the Samail ophiolite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号