首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   15篇
  国内免费   22篇
测绘学   9篇
大气科学   18篇
地球物理   60篇
地质学   39篇
海洋学   10篇
天文学   25篇
综合类   4篇
自然地理   12篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   11篇
  2018年   19篇
  2017年   17篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   8篇
  2010年   17篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1979年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
101.
Pressure solution creep was studied on sodium chloride, calcium carbonate and ammonium nitrate in respective saturated aqueous solutions under static loading and cyclic unloading. Ball indentation and powder compaction curves show that each transition from static to cyclic regime produces an increase—sometimes manifold—in creep rate which lasts over the whole time of cyclic impact. After returning to static regime, the initial creep rate reappears. Over longer-term tests, both in static and cyclic regime, the creep gradually slows down. Increasing impact frequency enhances the effect. Any noticeable changes in strain rate are absent in a pure inert medium (paraffin oil). Possible mechanisms of the cyclic unloading effect are discussed.  相似文献   
102.
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (~ 0.7–0.8‰·°C?1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C?1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m?2.yr?1 may record a seasonal cycle at shallow depths.  相似文献   
103.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.  相似文献   
104.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   
105.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   
106.
107.
Relations between integrable systems in plane and curved spaces   总被引:1,自引:0,他引:1  
We consider trajectory isomorphisms between various integrable systems on an n-dimensional sphere S n and a Euclidean space . Some of the systems are classical integrable problems of Celestial Mechanics in plane and curved spaces. All the systems under consideration have an additional first integral quadratic in momentum and can be integrated analytically by using the separation of variables. We show that some integrable problems in constant curvature spaces are not essentially new from the viewpoint of the theory of integration, and they can be analyzed using known results of classical Celestial Mechanics.  相似文献   
108.
We present a 3-year study of concentrations and sulfur isotope values (δ34S, Δ33S, and Δ36S) of sulfur compounds in the water column of Fayetteville Green Lake (NY, USA), a stratified (meromictic) euxinic lake with moderately high sulfate concentrations (12-16 mM). We utilize our results along with numerical models (including transport within the lake) to identify and quantify the major biological and abiotic processes contributing to sulfur cycling in the system. The isotope values of sulfide and zero-valent sulfur across the redox-interface (chemocline) change seasonally in response to changes in sulfide oxidation processes. In the fall, sulfide oxidation occurs primarily via abiotic reaction with oxygen, as reflected by an increase in sulfide δ34S at the redox interface. Interestingly, S isotope values for zero-valent sulfur sampled at this time still reflect production and recycling by phototrophic S-oxidation. In the spring, sulfide S isotope values suggest an increased input from phototrophic oxidation, consistent with a more pronounced phototroph population at the chemocline. This trend is associated with smaller fractionations between sulfide and zero-valent sulfur, suggesting a metabolic rate control on fractionation similar to that for sulfate reduction. Comparison of our data with previous studies indicates that the S isotope values of sulfate and sulfide in the deep waters are remarkably stable over long periods of time, with consistently large fractionations of up to 58‰ in δ34S. Models of the δ34S and Δ33S trends in the deep waters (considering mass transport via diffusion and advection along with biological processes) require that these fractionations are a consequence of sulfur compound disproportionation at and below the redox interface in addition to large fractionations during sulfate reduction. The large fractionations during sulfate reduction appear to be a consequence of the high sulfate concentrations and the distribution of organic matter in the water column. The occurrence of disproportionation in the lake is supported by profiles of intermediate sulfur compounds and by lake microbiology, but is not evident from the δ34S trends alone. These results illustrate the utility of including minor S isotopes in sulfur isotope studies to unravel complex sulfur cycling in natural systems.  相似文献   
109.
Given the heat that is reaching the surface from the interior of Enceladus, we ask whether liquid water is likely and at what depth it might occur. The heat may be carried by thermal conduction through the solid ice, by the vapor as it diffuses through a porous matrix, or by the vapor flowing upward through open cracks. The vapor carries latent heat, which it acquires when ice or liquid evaporates. As the vapor nears the surface it may condense onto the cold ice, or it may exit the vent without condensing, carrying its latent heat with it. The ice at the surface loses its heat by infrared radiation. An important physical principle, which has been overlooked so far, is that the partial pressure of the vapor in the pores and in the open cracks is nearly equal to the saturation vapor pressure of the ice around it. This severely limits the ability of ice to deliver the observed heat to the surface without melting at depth. Another principle is that viscosity limits the speed of the flow, both the diffusive flow in the matrix and the hydrodynamic flow in open cracks. We present hydrodynamic models that take these effects into account. We find that there is no simple answer to the question of whether the ice melts or not. Vapor diffusion in a porous matrix can deliver the heat to the surface without melting if the particle size is greater than ∼1 cm and the porosity is greater than ∼0.1, in other words, if the matrix is a rubble pile. Whether such an open matrix can exist under its own hydrostatic load is unclear. Flow in open cracks can deliver the heat without melting if the width of the crack is greater than ∼10 cm, but the heat source must be in contact with the crack. Frictional heating on the walls due to tidal stresses is one such possibility. The lifetime of the crack is a puzzle, since condensation on the walls in the upper few meters could seal the crack off in a year, and it takes many years for the heat source to warm the walls if the crack extends down to km depths. The 10:1 ratio of radiated heat to latent heat carried with the vapor is another puzzle. The models tend to give a lower ratio. The resolution might be that each tiger stripe has multiple cracks that share the heat, which tends to lower the ratio. The main conclusion is that melting depends on the size of the pores and the width of the cracks, and these are unknown at present.  相似文献   
110.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号