全文获取类型
收费全文 | 1753篇 |
免费 | 73篇 |
国内免费 | 50篇 |
专业分类
测绘学 | 59篇 |
大气科学 | 132篇 |
地球物理 | 372篇 |
地质学 | 618篇 |
海洋学 | 120篇 |
天文学 | 419篇 |
综合类 | 11篇 |
自然地理 | 145篇 |
出版年
2024年 | 10篇 |
2023年 | 14篇 |
2022年 | 10篇 |
2021年 | 38篇 |
2020年 | 43篇 |
2019年 | 40篇 |
2018年 | 81篇 |
2017年 | 69篇 |
2016年 | 79篇 |
2015年 | 75篇 |
2014年 | 80篇 |
2013年 | 115篇 |
2012年 | 67篇 |
2011年 | 99篇 |
2010年 | 82篇 |
2009年 | 97篇 |
2008年 | 90篇 |
2007年 | 94篇 |
2006年 | 78篇 |
2005年 | 61篇 |
2004年 | 64篇 |
2003年 | 49篇 |
2002年 | 48篇 |
2001年 | 36篇 |
2000年 | 44篇 |
1999年 | 34篇 |
1998年 | 23篇 |
1997年 | 25篇 |
1996年 | 19篇 |
1995年 | 12篇 |
1994年 | 13篇 |
1993年 | 11篇 |
1992年 | 15篇 |
1991年 | 8篇 |
1990年 | 9篇 |
1989年 | 7篇 |
1988年 | 6篇 |
1987年 | 7篇 |
1986年 | 12篇 |
1985年 | 14篇 |
1984年 | 7篇 |
1983年 | 10篇 |
1982年 | 5篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 8篇 |
1978年 | 7篇 |
1977年 | 5篇 |
1976年 | 5篇 |
1973年 | 4篇 |
排序方式: 共有1876条查询结果,搜索用时 11 毫秒
61.
Bruno Bézard Anna Fedorova Jean-Loup Bertaux Alexander Rodin Oleg Korablev 《Icarus》2011,216(1):173-183
Observations of the 1.10- and 1.18-μm nightside windows by the SPICAV-IR instrument aboard Venus Express were analyzed to characterize the various sources of gaseous opacity and determine the H2O mole fraction in the lower atmosphere of Venus. We showed that the line profile model of Afanasenko and Rodin (Afanasenko, T.S., Rodin, A.V. [2007]. Astron. Lett. 33, 203–210) underestimates the CO2 absorption in the high-wavelength wing of the 1.18-μm window and we derived an empirical lineshape that matches this wing well. An additional continuum opacity is required to reproduce the variation of the 1.10- and 1.18-μm radiances with surface elevation as observed by the VIRTIS-M instrument aboard Venus Express. A constant absorption coefficient of 0.7 ± 0.2 × 10−9 cm−1 am−2 best reproduces the observed variation. We compared spectra calculated with different CO2 and H2O line lists. We found that the CDSD line list lacks the 5ν1 + ν3 series of CO2 bands, which provide significant opacity in Venus’ deep atmosphere, and we have constructed a composite line list that best reproduces the observations. We also showed for the first time that HDO brings significant absorption at 1140–1190 nm. Using the best representation of the atmospheric opacity we could reach, we retrieved a water vapor mole fraction of ppmv, pertaining to the altitude range 5–25 km. Combined with previous measurements in the 1.74- and 2.3-μm windows, this result provides strong evidence for a uniform H2O profile below 40 km, in agreement with chemical models. 相似文献
62.
Spectral gravity wave parameterization suitable for planetary thermospheres applied to wind and temperature from Mars Climate Database reveals enormously strong drag incompatible with the wind distribution. It points out to a possible wind reversal in the 110-140 km layer similar to the one in the Earth’s lower thermosphere. 相似文献
63.
64.
Ansgar GRESHAKE Alexander N. KROT Anders MEIBOM Michael K. WEISBERG Michael E. ZOLENSKY Klaus KEIL 《Meteoritics & planetary science》2002,37(2):281-293
Abstract— Fine‐grained, heavily‐hydrated lithic clasts in the metal‐rich (CB) chondrites Queen Alexandra Range (QUE) 94411 and Hammadah al Hamra 237 and CH chondrites, such as Patuxent Range (PAT) 91546 and Allan Hills (ALH) 85085, are mineralogically similar suggesting genetic relationship between these meteorites. These clasts contain no anhydrous silicates and consist of framboidal and platelet magnetite, prismatic sulfides (pentlandite and pyrrhotite), and Fe‐Mn‐Mg‐bearing Ca‐carbonates set in a phyllosilicate‐rich matrix. Two types of phyllosilicates were identified: serpentine, with basal spacing of ?0.73 nm, and saponite, with basal spacings of about 1.1–1.2 nm. Chondrules and FeNi‐metal grains in CB and CH chondrites are believed to have formed at high temperature (>1300 K) by condensation in a solar nebula region that experienced complete vaporization. The absence of aqueous alteration of chondrules and metal grains in CB and CH chondrites indicates that the clasts experienced hydration in an asteroidal setting prior to incorporation into the CH and CB parent bodies. The hydrated clasts were either incorporated during regolith gardening or accreted together with chondrules and FeNi‐metal grains after these high‐temperature components had been transported from their hot formation region to a much colder region of the solar nebula. 相似文献
65.
Juan C. López Vieyra Alexander V. Turbiner Nicolais L. Guevara 《Astrophysics and Space Science》2007,308(1-4):493-497
- The exotic system H 3 ++ (which does not exist without magnetic field) exists in strong magnetic fields:
- In triangular configuration for B≈108–1011?G (under specific external conditions)
- In linear configuration for B>1010?G
- In the linear configuration the positive z-parity states 1σ g , 1π u , 1δ g are bound states
- In the linear configuration the negative z-parity states 1σ u , 1π g , 1δ u are repulsive states
- The H 3 ++ molecular ion is the most bound one-electron system made from protons at B>3×1013?G
66.
Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy 总被引:2,自引:0,他引:2
Henner Busemann M. O'D. Alexander Larry R. Nittler 《Meteoritics & planetary science》2007,42(7-8):1387-1416
Abstract— We have analyzed the chemically and isotopically well‐characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so‐called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub‐) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures. 相似文献
67.
68.
M. A. Worsley A. C. Fabian F. E. Bauer D. M. Alexander W. N. Brandt B. D. Lehmer 《Monthly notices of the Royal Astronomical Society》2006,368(4):1735-1741
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution. 相似文献
69.
70.
Abstract— The Chesapeake Bay impact structure, which is about 35 Ma old, has previously been proposed as the possible source crater of the North American tektites (NAT). Here we report major and trace element data as well as the first Sr‐Nd isotope data for drill core and outcrop samples of target lithologies, crater fill breccias, and post‐impact sediments of the Chesapeake Bay impact structure. The unconsolidated sediments, Cretaceous to middle Eocene in age, have ?Srt = 35.7 Ma of +54 to +272, and ?Ndt = 35.7 Ma ranging from ?6.5 to ?10.8; one sample from the granitic basement with a TNdCHUR model age of 1.36 Ga yielded an ?Srt = 35.7 Ma of +188 and an ?Ndt = 35.7 Ma of ?5.7. The Exmore breccia (crater fill) can be explained as a mix of the measured target sediments and the granite, plus an as‐yet undetermined component. The post‐impact sediments of the Chickahominy formation have slightly higher TNdCHUR model ages of about 1.55 Ga, indicating a contribution of some older materials. Newly analyzed bediasites have the following isotope parameters: +104 to +119 (?Srt = 35.7 Ma), ?5.7 (?Ndt = 35.7 Ma), 0.47 Ga (TSrUR), and 1.15 Ga (TNdCHUR), which is in excellent agreement with previously published data for samples of the NAT strewn field. Target rocks with highly radiogenic Sr isotopic composition, as required for explaining the isotopic characteristics of Deep Sea Drilling Project (DSDP) site 612 tektites, were not among the analyzed sample suite. Based on the new isotope data, we exclude any relation between the NA tektites and the Popigai impact crater, although they have identical ages within 2s? errors. The Chesapeake Bay structure, however, is now clearly constrained as the source crater for the North American tektites, although the present data set obviously does not include all target lithologies that have contributed to the composition of the tektites. 相似文献