首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   32篇
  国内免费   11篇
测绘学   26篇
大气科学   61篇
地球物理   117篇
地质学   182篇
海洋学   57篇
天文学   74篇
自然地理   40篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   10篇
  2019年   11篇
  2018年   21篇
  2017年   17篇
  2016年   34篇
  2015年   20篇
  2014年   29篇
  2013年   50篇
  2012年   20篇
  2011年   37篇
  2010年   25篇
  2009年   41篇
  2008年   26篇
  2007年   30篇
  2006年   33篇
  2005年   18篇
  2004年   13篇
  2003年   14篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1938年   1篇
  1895年   1篇
排序方式: 共有557条查询结果,搜索用时 15 毫秒
101.
102.
The Adula nappe belongs to the Lower Penninic domain of the Central Swiss Alps. It consists mostly of pre-Triassic basement lithologies occurring as strongly folded and sheared gneisses of various types with mafic boudins. We propose a new lithostratigraphy for the northern Adula nappe basement that is supported by detailed field investigations, U–Pb zircon geochronology, and whole-rock geochemistry. The following units have been identified: Cambrian clastic metasediments with abundant carbonate lenses and minor bimodal magmatism (Salahorn Formation); Ordovician metapelites associated with amphibolite boudins with abundant eclogite relicts representing oceanic metabasalts (Trescolmen Formation); Ordovician peraluminous metagranites of calc-alkaline affinity ascribed to subduction-related magmatism (Garenstock Augengneiss); Ordovician metamorphic volcanic–sedimentary deposits (Heinisch Stafel Formation); Early Permian post-collisional granites recording only Alpine orogenic events (Zervreila orthogneiss). All basement lithologies except the Permian granites record a Variscan + Alpine polyorogenic metamorphic history. They document a complex Paleozoic geotectonic evolution consistent with the broader picture given by the pre-Mesozoic basement framework in the Alps. The internal consistency of the Adula basement lithologies and the stratigraphic coherence of the overlying Triassic sediments suggest that most tectonic contacts within the Adula nappe are pre-Alpine in age. Consequently, mélange models for the Tertiary emplacement of the Adula nappe are not consistent and must be rejected. The present-day structural complexity of the Adula nappe is the result of the intense Alpine ductile deformation of a pre-structured entity.  相似文献   
103.
Extractable biomarkers can help elucidate the environment and biota of ancient glaciations, although the method must be applied with care, as glacial sediments have a potential for incorporation of older detrital carbon. In Phanerozoic glacial sediments, the distinct elemental, molecular and isotopic compositions of the terrestrial and marine biomass allow discrimination between primary marine and redeposited terrestrial organic matter. However, as the Proterozoic biosphere was largely microbial and marine, biomarker and isotopic analyses are insufficient for distinguishing primary organic matter from secondary reworked organic matter. Here, we report the combined application of Raman spectroscopy and biomarker analysis to Precambrian glacial sediments, which, together, allows discrimination between mixed pools of organic carbon and provides a promising new approach for rapidly screening Precambrian sediments for immature organic matter amenable to biomarker analysis.  相似文献   
104.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   
105.
We present a theoretical weakly nonlinear analysis of the dynamics of an inviscid flow submitted to both rotation and precession of an unbounded cylindrical container, by considering the coupling of two Kelvin (inertial) waves. The parametric centrifugal instability known for this system is shown to saturate when one expands the Navier–Stokes equation to higher order in the assumed small precession parameter (ratio of precession to rotation frequencies) with the derivation of two coupled Landau equations suitable to describe the dynamics of the modes. It is shown that an azimuthal mean flow with differential rotation is generated by this modes coupling. The time evolution of the associated dynamical system is studied. These theoretical results can be compared with water experiments and also to some numerical simulations where viscosity and finite length effects cannot be neglected.  相似文献   
106.
北京奥运会期间气溶胶光学特性垂直分布特征   总被引:2,自引:0,他引:2  
利用激光雷达观测资料,分析了奥运会期间气溶胶消光系数的垂直廓线,并结合后向轨迹方法对北京地区污染来源以及污染控制措施效果进行了初步分析。观测数据表明:1)2008年消光系数较之2007年在不同高度层的降幅并不相同,600m以下的年际降幅最为显著,1200~4000m高度范围次之。2)各类型消光系数垂直廓线出现频次的统计显示,2008年影响北京的主要廓线类型为边界层上部最高型,而非近地面最高型,说明2008年近地层消光系数有明显的降低。另外,利用后向轨迹法对近地层消光系数降低的原因进行了分析,结果表明,当近地层气团中污染物主要来自于北京周边地区时,400m以下气溶胶消光系数的年际降幅可达18.1%,这说明北京周边区域大气污染控制措施对改善北京近地面层气溶胶污染起到了重要作用。  相似文献   
107.
Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.  相似文献   
108.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
109.
As paleoceanographic archives, deep sea coral skeletons offer the potential for high temporal resolution and precise absolute dating, but have not been fully investigated for geochemical reconstructions of past ocean conditions. Here we assess the utility of skeletal P/Ca, Ba/Ca and U/Ca in the deep sea coral D. dianthus as proxies of dissolved phosphate (remineralized at shallow depths), dissolved barium (trace element with silicate-type distribution) and carbonate ion concentrations, respectively. Measurements of these proxies in globally distributed D. dianthus specimens show clear dependence on corresponding seawater properties. Linear regression fits of mean coral Element/Ca ratios against seawater properties yield the equations: P/Cacoral (μmol/mol) = (0.6 ± 0.1) P/Casw(μmol/mol) - (23 ± 18), R2 = 0.6, n = 16 and Ba/Cacoral(μmol/mol) = (1.4 ± 0.3) Ba/Casw(μmol/mol) + (0 ± 2), R2 = 0.6, n = 17; no significant relationship is observed between the residuals of each regression and seawater temperature, salinity, pressure, pH or carbonate ion concentrations, suggesting that these variables were not significant secondary dependencies of these proxies. Four D. dianthus specimens growing at locations with Ωarag ? 0.6 displayed markedly depleted P/Ca compared to the regression based on the remaining samples, a behavior attributed to an undersaturation effect. These corals were excluded from the calibration. Coral U/Ca correlates with seawater carbonate ion: U/Cacoral(μmol/mol) = (−0.016 ± 0.003) (μmol/kg) + (3.2 ± 0.3), R2 = 0.6, n = 17. The residuals of the U/Ca calibration are not significantly related to temperature, salinity, or pressure. Scatter about the linear calibration lines is attributed to imperfect spatial-temporal matches between the selected globally distributed specimens and available water column chemical data, and potentially to unresolved additional effects. The uncertainties of these initial proxy calibration regressions predict that dissolved phosphate could be reconstructed to ±0.4 μmol/kg (for 1.3-1.9 μmol/kg phosphate), and dissolved Ba to ±19 nmol/kg (for 41-82 nmol/kg Basw). Carbonate ion concentration derived from U/Ca has an uncertainty of ±31μmol/kg (for ). The effect of microskeletal variability on P/Ca, Ba/Ca, and U/Ca was also assessed, with emphasis on centers of calcification, Fe-Mn phases, and external contaminants. Overall, the results show strong potential for reconstructing aspects of water mass mixing and biogeochemical processes in intermediate and deep waters using fossil deep-sea corals.  相似文献   
110.
Abstract: The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS 14C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号