首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   23篇
  国内免费   4篇
测绘学   12篇
大气科学   31篇
地球物理   132篇
地质学   194篇
海洋学   22篇
天文学   137篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   36篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   29篇
  2011年   33篇
  2010年   25篇
  2009年   36篇
  2008年   34篇
  2007年   27篇
  2006年   23篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1983年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有554条查询结果,搜索用时 0 毫秒
551.
Serpentinites are metamorphic rocks with good technological properties and valuable ornamental characteristics, which have been exploited since ancient times. Actually, their use is limited and monitored in several countries worldwide because they can contain fibrous asbestos minerals that may be carcinogenic. Furthermore, certain types of fibrous minerals can be confused with asbestos, and must therefore be carefully investigated. We have investigated the possible presence of the asbestos and non-asbestos fibrous phases contained in serpentinitic rocks in a meta-ophiolitic sequence from the Gimigliano-Mount Reventino Unit (Southern Italy), which had not been previously assessed. The detection and quantification of asbestos and the correct distinction of the fibrous non-asbestos minerals are very important not only from a scientific point of view, but also from a legislative one. This is especially the case for the administrative agencies that have to take decisions with regards to the implementation of public and occupational health protection measures (e.g., in road yards and quarry excavations). As a consequence of this, serpentinitic rock samples have been characterized in detail through X-ray powder diffraction, scanning and transmission electron microscopy combined with energy-dispersive spectrometry, analytical electron microscopy (SEM–EDS and TEM–AEM), differential scanning calorimetry, thermogravimetry and micro-Raman spectroscopy. Two kinds of asbestos and four kinds of non-asbestos fibrous silicates have been detected in the examined samples. In order of decreasing abundance these are polygonal serpentine, chrysotile, fibrous antigorite, tremolite, gedrite and magnesiohornblende. The size, morphology, crystallinity and chemical composition of the fibres were also discussed, in the light of the possible role these properties could play in the carcinogenic effect on human health.  相似文献   
552.
Accurate modeling of the time-dependent behavior of geomaterials is of great importance in a number of engineering structures interacting with soft, highly compressible clay layers or with organic clays and peats. In this work, a uniaxial constitutive model, based on Perzyna’s overstress theory and directly extendible to multiaxial stress conditions, is formulated and validated. The proposed constitutive approach essentially has three innovative aspects. The first concerns the implementation of two viscoplastic mechanisms within Perzyna’s theory in order to distinguish between short-term (quasi-instantaneous) and long-term plastic responses. Similarly, elastic response is simulated by combining an instantaneous and a long-term viscous deformation mechanism. The second innovative aspect concerns the use of a bespoke logarithmic law for viscous effects, which has never been used before to simulate delayed soil behavior (as far as the authors are aware). The third concerns the model’s extensive validation by simulating a number of different laboratory test results, including conventional and unconventional oedometer tests with small and large load increments/decrements and wide and narrow loading/unloading cycles, constant rates of stress and strain tests, and oedometer tests performed in a Rowe consolidation cell with measurement of pore pressure dissipation.  相似文献   
553.
Sulfide-rich tailings are a well-known environmental threat due to their production of acid drainage (AD) and release of potential toxic elements (PTE) to the local environment. The presence of heterogeneous materials produces complex environmental signatures and complicates the quantitative prediction of contamination. The present work provides a method of quantifying such heterogeneities, starting from mineral processing data of the Reps, Mirdita (Albania) site. A quantitative flow sheet (QF) method was applied to a selected dump site of the Mirdita copper mining district where secondary pyrite separation had been used in the past. The site is subject to long-lasting (103 years) AD processes with significant release of PTE into the local environment. The tailings at the Reps site are divided into two classes based on the sulfide S content, respectively, represented by high-sulfide-content (S > 10 wt%) materials (hS) and low-sulfide-content (S < 3 wt%) material (lS). The reconstruction of the QF allowed us to identify the hS tailings as the discharge of single-flotation processing lines. This material accounts for about 82% of the total potential H2SO4 production, even though it represents < 20% of the entire tailing discard. The QF is a useful tool for the evaluation of heterogeneity and consequently for the modeling of waste management within abandoned sites and in working plants. Given a good quantification, heterogeneity can in fact support the setting of pyrite separation lines or the separate management of pyrite-rich tailing dumps.  相似文献   
554.
Recent observations of failure and damage of buildings and structures under seismic action has led to an increasing interest for an in-depth analysis of the vertical component of site ground motion. In particular, when dealing with saturated soils, the current engineering practice does not usually go beyond the simplified u p formulation of the Biot's equations describing the coupled hydro-mechanical behaviour, thus neglecting some terms of fluid inertial forces, despite the presence of more refined formulations, for example, the u U formulation. Therefore, a theoretical and numerical validation of the u p formulation as compared with the u U formulation is proposed in this work, where the numerical simulations are compared with the analytical solution for the u p formulation, which is also derived and illustrated in this text. The comparison between the two formulations and the analytical solution is provided for different levels of permeability and dynamic actions, which are representative of a wide scenario of site ground properties and seismic hazard in the vertical direction. In particular, the soil response is analysed in terms of acceleration and pore pressure time history, frequency content, acceleration response spectrum, and amplification ratio of acceleration. This study extends the discussion of the limits of applicability of the u p formulation with respect to the rigorous solution of Biot's equations (obtained here with u U formulation) to the context of a complex dynamic regime provided by the vertical components of real earthquake records, and paves the way for further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号