首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   18篇
  国内免费   4篇
测绘学   12篇
大气科学   31篇
地球物理   131篇
地质学   190篇
海洋学   22篇
天文学   137篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   36篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   29篇
  2011年   33篇
  2010年   25篇
  2009年   36篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有549条查询结果,搜索用时 15 毫秒
1.
2.
Observations of the Virgo Cluster galaxy NGC 4569 in soft X-rays and in Hα reveal both an asymmetrically distributed hot gaseous halo and a giant filament of diffuse emission, respectively, extending from the same side of the disk, the latter one to at least 8.8 kpc. A deep longslit spectrum along the filament shows velocities systematically different from the systemic velocity of NGC 4569. With the inclination of the disk one can determine the Hα spur as a giant outflow in NGC 4569. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.  相似文献   
4.
Abstract— Using an H‐plot analysis, we identify 234 currently known near‐Earth objects that are accessible for rendezvous with a “best case” delta‐V of less than 7 km/s. We provide a preliminary compositional interpretation and assessment of these potential targets by summarizing the taxonomic properties for 44 objects. Results for one‐half (22) of this sample are based on new spectroscopic measurements presented here. Our approach provides an easy‐to‐update method for giving guidelines to both observers and mission analysts for focusing on objects for which actual mission opportunities are most likely to be found. Observing prospects are presented for categorizing the taxonomic properties of the most accessible targets that are not yet measured.  相似文献   
5.
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.  相似文献   
6.
A survey is made of the present constraints on cosmological parameters from Cosmic Microwave Background Anisotropies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
We present the main findings of a dynamical mapping performed in the Low Earth Orbit region. The results were obtained by propagating an extended grid of initial conditions, considering two different epochs and area-to-mass ratios, by means of a singly averaged numerical propagator. It turns out that dynamical resonances associated with high-degree geopotential harmonics, lunisolar perturbations and Solar radiation pressure can open natural deorbiting highways. For area-to-mass ratios typical of the orbiting intact objects, these corridors can be exploited only in combination with the action exerted by the atmospheric drag. For satellites equipped with an area augmentation device, we show the boundary of application of the drag, and where the Solar radiation pressure can be exploited.  相似文献   
8.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
9.
10.
We revisit some results of perturbation theories by a method of successive elimination of harmonics inspired by some ideas of Delaunay. On the one hand, we give a connection between the KAM theorem and the Nekhoroshev theorem. On the other hand, we support in a quantitative fashion a semi-numerical method of analysis of a perturbed system recently introduced by one of the authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号