首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   20篇
地质学   77篇
海洋学   17篇
天文学   37篇
综合类   1篇
自然地理   16篇
  2024年   1篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   9篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   13篇
  2006年   11篇
  2005年   3篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1971年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
41.
42.
Subglacial meltwater plays a significant yet poorly understood role in the dynamics of the Antarctic ice sheets. Here we present new swath bathymetry from the western Amundsen Sea Embayment, West Antarctica, showing meltwater channels eroded into acoustic basement. Their morphological characteristics and size are consistent with incision by subglacial meltwater. To understand how and when these channels formed we have investigated the infill of three channels. Diamictons deposited beneath or proximal to an expanded grounded West Antarctic Ice Sheet are present in two of the channels and these are overlain by glaciomarine sediments deposited after deglaciation. The sediment core from the third channel recovered a turbidite sequence also deposited after the last deglaciation. The presence of deformation till at one core site and the absence of typical meltwater deposits (e.g., sorted sands and gravels) in all three cores suggest that channel incision pre-dates overriding by fast flowing grounded ice during the last glacial period. Given the overall scale of the channels and their incision into bedrock, it is likely that the channels formed over multiple glaciations, possibly since the Miocene, and have been reoccupied on several occasions. This also implies that the channels have survived numerous advances and retreats of grounded ice.  相似文献   
43.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   
44.
We demonstrate that conventional palaeoseismic trenching and mapping techniques that do not account for the effects of off‐fault deformation can significantly underestimate a fault’s slip rate. Using combined interpretations of 3‐D ground‐penetrating radar (GPR) and palaeoseismic trench data, we show that drag folding and hangingwall and footwall horizontal‐axis rotations have accommodated up to 41% of total extension across a normal fault within the Taupo Rift, New Zealand, over the past 24.6 ± 1.0 cal. ka BP. Our results may explain why geologically determined fault‐slip rates for the central and southern Taupo Rift are anomalously low when compared with geodetic estimates. We suggest that a combination of GPR surveying and palaeoseismic trenching may help resolve differences between geodetically and geologically determined strain rates observed across active extensional regimes worldwide.  相似文献   
45.
A method for determining the cross-isotherm ocean transport from surface heat flux and ocean temperature data is derived. By computing the volume flux through the isotherm that extend from 19°E, 74°N to the eastern part of the Kola Peninsula, the flow through the western entrance of the Barents Sea south of 74°N is estimated. Using three different surface heat flux datasets, the inflow is found to range from 2.9 to 4.5 Sv in winter (October–March) and from 0.4 to 1.4 Sv in summer (April–September; 1 Sv=106 m3 s−1). The seasonal variations are stronger than indicated by results from direct current measurements, probably because the seasonal cycle of the surface heat fluxes is overestimated along the considered isotherm. The annual mean inflow ranges from 1.9 to 2.2 Sv during a cold period (1986–1988), and from 2.4 to 3.0 Sv during a warm period (1990–1992), close to reported observations.  相似文献   
46.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   
47.
Fergus Green 《Climatic change》2018,150(1-2):103-116
Historically, climate governance initiatives and associated scholarship have all but ignored the potential for “global moral norms” to bring about changes in the political conditions for global climate mitigation. This is surprising, since global moral norms are widely employed—as both a mode of governance and an analytical framework—in other domains of global governance, from international security to human rights. However, recent national-level fossil fuel divestments, moratoria on new coal mines and bans on gas fracking, among other developments, suggest the promise of global moral norms prohibiting fossil fuel-related activities, which this article terms “anti-fossil fuel norms” (AFFNs). The article interprets recent examples of such activities in the light of international relations theory on moral norms to provide a general framework for understanding how AFFNs originate, spread and affect states. Specifically, the article argues that there are: (i) influential agents that are originating, and likely to continue to originate, AFFNs; and (ii) international and domestic mechanisms by which AFFNs are likely to spread widely among states and have a significant causal effect on the identity-related considerations or rational calculations of states in the direction of limiting or reducing the production or consumption of fossil fuels. The article also shows that, because they spread and affect state behaviour through mechanisms of “international socialization” and domestic “political mobilization”, AFFNs cohere with and build upon the new paradigm of global climate governance crystallized in the Paris Agreement. AFFNs, the article concludes, represent a promising new frontier in climate governance.  相似文献   
48.
49.
Lithostratigraphical and biostratigraphical investigation of coastal marshes along the Atlantic coast of the Outer Hebrides from Lewis in the north to Barra in the south discloses inland-tapering sand units within marshland areas. The inland extent of each sand unit has been radiometrically dated and the units have been collectively interpreted as a proxy for past coastal storminess. The data appear to indicate that for the study sites investigated, the majority of the sand units were produced during episodes of climate deterioration both prior to and after the well-known period of Medieval warmth (MWP). Many were produced after ca. AD 1400. It is argued that the episodes of sand blow indicated by the deposits may reflect periods of increased cyclogenesis in the Atlantic associated with increased sea ice cover and an increase in the thermal gradient across the North Atlantic region.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号