首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   42篇
  国内免费   21篇
测绘学   52篇
大气科学   95篇
地球物理   346篇
地质学   582篇
海洋学   111篇
天文学   351篇
综合类   16篇
自然地理   153篇
  2022年   8篇
  2021年   8篇
  2020年   23篇
  2019年   22篇
  2018年   31篇
  2017年   23篇
  2016年   31篇
  2015年   25篇
  2014年   37篇
  2013年   74篇
  2012年   49篇
  2011年   68篇
  2010年   87篇
  2009年   92篇
  2008年   80篇
  2007年   63篇
  2006年   60篇
  2005年   58篇
  2004年   50篇
  2003年   64篇
  2002年   53篇
  2001年   30篇
  2000年   39篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   21篇
  1995年   23篇
  1994年   27篇
  1993年   25篇
  1992年   23篇
  1990年   21篇
  1989年   23篇
  1988年   26篇
  1987年   21篇
  1986年   20篇
  1985年   34篇
  1984年   32篇
  1983年   27篇
  1982年   22篇
  1981年   36篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   20篇
  1976年   14篇
  1975年   11篇
  1974年   19篇
  1973年   16篇
  1971年   8篇
排序方式: 共有1706条查询结果,搜索用时 31 毫秒
931.
The features of the faults in the central and northern Tibetan plateau are discussed, based on two super-wide band magnetotelluric (MT) sounding profiles belonging to the INDEPTH (III)-MT project, which were finished between 1998 and 1999: one is from Deqing to Longweicuo (named line 500), the other is from Naqu to Golmud (line 600). This work assists research on the collision and subduction mode between the India and Asia plates. The MT results show that there is a series of deep faults, F1 to F10, in the central and northern Tibetan plateau. Of these faults, F2 is an earlier main fault which leans to the north, and F1 is a later main overriding fault. The Jiali deep fault zone, which has a very complex space structure, is composed of these two faults. F3, F4 and F5 are super-deep faults. They are high-angle faults and lean a little to the south. The main fault zone of the Bangong-Nujiang suture is composed of these three faults. Because of later activity in the structure, several shallow faults formed in the upper crust within the Bangong-Nujiang suture. The Tanggula fault zone is composed of two main faults, F6 and F7, and a series of sub-faults. The shallow segments of the main faults are in high angles and the deep segments of main faults are in low angles. These two faults generally lean to the south and extend into the lower crust. The Jinshajiang suture is composed of the Jinshajiang fault (F8) and the Kekexili fault (F9), and there is a series of sub-faults in the upper crust between these two faults. The Jinshajiang suture is a very wide suture caused by continent-continent collision. The Middle Kunlun fault (F10), which is the main structure of the Kunlun fault zone, is a high angle, super-deep fault. It is the north boundary of the Songpan-Ganzi-Kekexili block. Based on the conductive structure of the profile, the southern part of the Middle Kunlun fault belongs to the Tibetan plateau, but it is not certain whether the northern part of the Middle Kunlun fault belongs to the Tibetan plateau. There are conductive bodies stretching from the crust into the upper mantle below the Bangong-Nujiang suture and Jinshajiang suture. This may suggest heat exchange between the crust and mantle. Translated from Earth Science—Journal of China University of Geosciences, 2006, 31(2): 257–265 [译自: 地球科学—中国地质大学学报]  相似文献   
932.
933.
Measurements of saturated hydraulic conductivity (Ks) and diagnostic model simulations show that all types of logging road/trail in the 14·4 ha Bukit Tarek Experimental Catchment 3 (BTEC3) generate substantial Horton overland flow (HOF) during most storms, regardless of design and level of trafficking. Near‐surface Ks(0–0·05 m) on the main logging road, skid trails and newly constructed logging terraces was less than 1, 2 and 34 mm h?1, respectively. Near‐surface Ks on an abandoned skid trail in an adjacent basin was higher (62 mm h?1), owing to the development of a thin organic‐rich layer on the running surface over the past 40 years. Saturated hydraulic conductivity measured at 0·25 m below the surface of all roads was not different (all <6 mm h?1) and corresponded to the Ks of the adjacent hillslope subsoil, as most roads were excavated into the regolith more than 0·5–1 m. After 40 years, only limited recovery in near‐surface Ks occurred on the abandoned skid trail. This road generated HOF after the storage capacity of the upper near‐surface layer was exceeded during events larger than about 20 mm. Thus, excavation into low‐Ks substrate had a greater influence on the persistence of surface runoff production than did surface compaction by machinery during construction and subsequent use during logging operations. Overland flow on BTEC3 roads was also augmented by the interception of shallow subsurface flow traveling along the soil–saprolite/bedrock interface and return flow emerging from the cutbank through shallow biogenic pipes. The most feasible strategy for reducing long‐term road‐related impacts in BTEC3 is limiting the depth of excavation and designing a more efficient road network, including minimizing the length and connectivity of roads and skid trails. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
934.
Hidden mineshafts located in urban areas are a significant problem across much of the industrialized world. Electrical resistivity tomography (ERT) is a technique that can detect and characterize hidden mine entries by exploiting resistivity contrasts between the shaft and surrounding materials, resulting from either compositional or structural differences. A case study is presented in which both surface and crosshole 3D ERT surveys are used to image a hidden backfilled mineshaft at a built environment site, situated on Carboniferous Lower Coal Measures strata in the UK.Backfilled shafts generally present the greatest challenge for detection using geophysical methods, as contrasts between the fill and bedrock are typically low compared to air or water-filled conditions. Nevertheless, the shaft in this case was identified by both the surface and crosshole 3D surveys. The shaft appeared as a strongly resistive anomaly relative to background materials, which we interpreted as resulting from the disturbed fabric of the fill materials rather than any significant compositional differences. The study highlighted the respective strengths and weaknesses of the surface and crosshole ERT methodologies for this type of problem. The surface survey, which covered a non-rectangular area to accommodate irregular boundaries and other physical obstructions, provided a relatively rapid means of investigating the study site. However, this method had a limited depth of investigation and was constrained in its coverage by the locations of buildings. By contrast, the 3D crosshole method was able to image the shaft to the level of the deepest borehole electrodes. Although crosshole ERT is too expensive to be used for large-scale mineshaft surveys, this study clearly demonstrates its suitability for targeted investigations where surface methods cannot be deployed, such as scanning beneath surface structures or in situations where it is essential for resolution to be maintained with depth.  相似文献   
935.
Relative percentages of sand, silt, and clay from samples of the same till unit are not identical because of different lithologies in the source areas, sorting in transport, random variation, and experimental error. Random variation and experimental error can be isolated from the other two as follows. For each particle-size class of each till unit, a standard population is determined by using a normally distributed, representative group of data. New measurements are compared with the standard population and, if they compare satisfactorily, the experimental error is not significant and random variation is within the expected range for the population. The outcome of the comparison depends on numerical criteria derived from a graphical method rather than on a more commonly used one-way analysis of variance with two treatments. If the number of samples and the standard deviation of the standard population are substituted in at-test equation, a family of hyperbolas is generated, each of which corresponds to a specific number of subsamples taken from each new sample. The axes of the graphs of the hyperbolas are the standard deviation of new measurements (horizontal axis) and the difference between the means of the new measurements and the standard population (vertical axis). The area between the two branches of each hyperbola corresponds to a satisfactory comparison between the new measurements and the standard population. Measurements from a new sample can be tested by plotting their standard deviation vs. difference in means on axes containing a hyperbola corresponding to the specific number of subsamples used. If the point lies between the branches of the hyperbola, the measurements are considered reliable. But if the point lies outside this region, the measurements are repeated. Because the critical segment of the hyperbola is approximately a straight line parallel to the horizontal axis, the test is simplified to a comparison between the means of the standard population and the means of the subsample. The minimum number of subsamples required to prove significant variation between samples caused by different lithologies in the source areas and sorting in transport can be determined directly from the graphical method. The minimum number of subsamples required is the maximum number to be run for economy of effort.  相似文献   
936.
CTA 21 has long been the outstanding example of a strong, compact radio source lacking an optical identification. We report the discovery at infrared wavelengths of the counterpart of CTA 21, and show that its spectral shape is unusual.  相似文献   
937.
Summary. A theoretical investigation of the way in which an isotropic rock containing single-domain particles acquires both IRM and ARM (or TRM) has indicated that stationary single-axis alternating field (af) demagnetization with the af axis at an angle to the remanence vector should produce progressive angular changes in a single-component remanence as demagnetization proceeds. Just before the remanence is completely removed it should lie at 90° to the af axis irrespective of the original orientation of the remanence (apart from 0°). Experimental observations on a rock sample support these deductions.
This analysis has been extended to investigate the way in which ARM (or TRM) and IRM are demagnetized by static three-axis demagnetization methods which are used by some workers in palaeomagnetism. Theory, in conjunction with the use of a numerical model, predicts that an ARM or TRM should not undergo significant direction changes when these methods are applied but an IRM should undergo progressive direction changes as demagnetization proceeds, usually moving until it makes an angle of cos−1 (1/3) with each of the three af axes just before it is removed. Confirmation that such changes do occur have been obtained by experiments on a rock sample. The relative merits of static and tumbling af demagnetization methods are also discussed.  相似文献   
938.
A second-order libration solution of theIdeal Resonance Problem is construeted using a Lie-series perturbation technique. The Ideal Resonance Problem is characterized by the equations $$\begin{gathered} - F = B(x) + 2\mu ^2 A(x)sin^2 y, \hfill \\ \dot x = - Fy,\dot y = Fx, \hfill \\ \end{gathered} $$ together with the property thatB x vanishes for some value ofx. Explicit expressions forx andy are given in terms of the mean elements; and it is shown how the initial-value problem is solved. The solution is primarily intended for the libration region, but it is shown how, by means of a substitution device, the solution can be extended to the deep circulation regime. The method does not, however, admit a solution very close to the separatrix. Formulae for the mean value ofx and the period of libration are furnished.  相似文献   
939.
Surf zones, regions of breaking waves, are at the interface between the shore and coastal ocean. Surf zone hydrodynamics may affect delivery of phytoplankton subsidies to the intertidal zone. Over a month of daily sampling at an intermediate surf zone with bathymetric rip currents and a reflective surf zone, we measured surf zone hydrodynamics and compared concentrations of coastal phytoplankton taxa in the surf zones to concentrations offshore. At the intermediate surf zone, ~80% of the variability in the concentration of coastal phytoplankton taxa within the surf zone was explained by their variation offshore; however, concentrations were much higher and lower than those offshore in samples from a bathymetric rip current and over the adjacent shoal, respectively. Hydrodynamics at this intermediate surf zone did not hinder the delivery of coastal phytoplankton to the surf zone, but the bathymetric rip current system appeared to redistribute phytoplankton concentrating them within eddies. At the reflective shore, we sampled surf zones at a beach and two adjacent rocky intertidal sites. Concentrations of typical coastal phytoplankton taxa were usually an order of magnitude or more lower than those offshore, even when offshore samples were collected just 20 m beyond the breakers. The phytoplankton assemblages inside and outside the surf zone often appeared to be disconnected. Surf zone hydrodynamics at the steep, reflective shore coupled with low phytoplankton concentrations in near-surface water appeared to limit delivery of phytoplankton subsidies to the surf zone. Surf zone hydrodynamics may be a key factor in the alongshore variation in phytoplankton subsidies to coastal communities.  相似文献   
940.
There appears to be a clear general consensus in the literature regarding four critical issues that define the problem of the October 1963 Vaiont landslide and its behaviour that are central to the disaster: (1) the 1963 failure was a reactivation of an ancient landslide; (2) failure took place along thin clay seams (already at residual strength); (3) the sliding surface had a ‘chair’ shape with a (sub)horizontal base; and (4) failure was triggered by inundation of the toe of the slide mass by rising reservoir levels. The key to understanding the Vaiont landslide is the failure surface geometry, which was controlled by the structural geology. It now appears that the so-called chair structure (that was assumed to define the shape of the failure surface) does not exist, and without it, the first consensual point is untenable, and the fourth may not contain the whole truth. We have systematically re-examined the published evidence and undertaken our own new research in order to test the logical and geotechnical validity of the four elements of the consensus. Glacial processes can account for the pre-failure morphology of the landslide site; the clay seams must therefore have been at peak shear strength as there was no ancient landslide. Tectonic processes can account for the failure surface geometry, which does not have a ‘chair’ shape, as well as small-scale structures; and rainfall appears to have been an essential element in the initiation and development of the landslide. Our findings largely contradict the consensus position and thus form the basis of a new overarching hypothesis for the landslide that should account for all of the observed and known features, events and data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号