首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1703篇
  免费   35篇
  国内免费   21篇
测绘学   53篇
大气科学   100篇
地球物理   357篇
地质学   595篇
海洋学   131篇
天文学   353篇
综合类   16篇
自然地理   154篇
  2022年   8篇
  2021年   8篇
  2020年   23篇
  2019年   22篇
  2018年   31篇
  2017年   24篇
  2016年   33篇
  2015年   25篇
  2014年   40篇
  2013年   75篇
  2012年   51篇
  2011年   69篇
  2010年   89篇
  2009年   93篇
  2008年   78篇
  2007年   63篇
  2006年   59篇
  2005年   57篇
  2004年   53篇
  2003年   63篇
  2002年   55篇
  2001年   31篇
  2000年   40篇
  1999年   33篇
  1998年   23篇
  1997年   26篇
  1996年   21篇
  1995年   23篇
  1994年   27篇
  1993年   26篇
  1992年   23篇
  1990年   21篇
  1989年   25篇
  1988年   29篇
  1987年   22篇
  1986年   20篇
  1985年   35篇
  1984年   34篇
  1983年   32篇
  1982年   23篇
  1981年   37篇
  1980年   25篇
  1979年   18篇
  1978年   16篇
  1977年   20篇
  1976年   15篇
  1975年   11篇
  1974年   19篇
  1973年   16篇
  1971年   8篇
排序方式: 共有1759条查询结果,搜索用时 15 毫秒
71.
Cosmic microwave background and large-scale structure data will shortly improve dramatically with the Microwave Anisotropy Probe and Planck Surveyor , and the Anglo-Australian 2-Degree Field and Sloan Digital Sky Survey. It is therefore timely to ask which of the microwave background and large-scale structure will provide a better probe of primordial non-Gaussianity. In this paper we consider this question, using the bispectrum as a discriminating statistic. We consider several non-Gaussian models and find that in each case the microwave background will provide a better probe of primordial non-Gaussianity. Our results suggest that if microwave background maps appear Gaussian, then apparent deviations from Gaussian initial conditions in galaxy surveys can be attributed with confidence to the effects of biasing. We demonstrate this precisely for the spatial bispectrum induced by local non-linear biasing.  相似文献   
72.
Alan Paul Boss 《Icarus》1983,55(1):181-184
The collapse of a very low thermal energy, rotating cloud results in fragmentation to a binary protostellar system even in the nonisothermal regime. The solar system therefore probably did not form from a fragmentation hierarchy involving ejection of the presolar nebula from a multiple system.  相似文献   
73.
Our survey of type 4–6 ordinary chondrites indicates that gas-poor, melt-rock and/or exotic clast-bearing fragmental breccias constitute 5%, 22% and 23%, respectively, of H, L and LL chondrites. These abundances contrast with the percentages of solar-gas-rich regolith breccias among ordinary chondrites: H (14%), L (3%) and LL (8%) (Crabb and Schultz, 1981). Petrologic study of several melt-rock-clast-bearing fragmental breccias indicates that some acquired their clasts prior to breccia metamorphism and others acquired them after metamorphism of host material. In general, the melt-rock clasts in gas-poor H chondrite fragmental breccias were acquired after breccia metamorphism and were probably formed by impacts into boulders or exposed outcrops of H4-6 material in the H chondrite parent body regolith. In contrast, most of the melt-rock clasts in gas-poor L and LL fragmental breccias were acquired prior to breccia metamorphism. The low abundance of regolith breccias among L chondrites and evidence that at least two-thirds of the L chondrites suffered a major shock event 0.5 Gyr ago, suggest that the L parent body may have been disrupted by a major collision at that time and that the remaining parent body fragments were too small to develop substantial regoliths (e.g., Heymann, 1967; Crabb and Schultz, 1981). Such a disruption would have exposed a large amount of L chondrite bedrock, some of which would consist of fragmental breccias that acquired melt-rock clasts very early in solar system history, prior to metamorphism. The exposed bedrock would serve as a potential target for sporadic meteoroid impacts to produce a few fragmental breccias with unmetamorphosed melt-rock clasts. The high proportion of genomict brecciated LL chondrites reflects a complex collisional history, probably including several episodes of parent body disruption and gravitational reassembly. Differences in the abundances of different kinds of breccias among the ordinary chondrite groups are probably due to the stochastic nature of major asteroidal collisions.  相似文献   
74.
Abstract— Metallic Cu of moderately high purity (~985 mg/g Cu, ~15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically ≤20 μm) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 × 10?4 vol%, corresponding to only 4–5% of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/mm2 have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilite; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.  相似文献   
75.
76.
Medium-term prediction of sediment transport and morphological behaviour in the coastal zone is becoming increasingly important as a result of human interference and changing environmental conditions. The interaction of waves and tides is shown to play a pivotal role in the net (annual) sediment transport and morphodynamics of the coastal zone. The Telemac Modelling System has been applied to the Dyfi Estuary and neighbouring coastline, mid Wales, to recreate the annual wave–current conditions and the resulting sediment fluxes. ‘Input reduction’ methods have been required to produce realistic schematisations of events in practical computation times. A field campaign carried out in 2006 provided data for validation of the flow module (Telemac-2D) and also observations to verify the patterns predicted by the wave module (Tomawac). To improve model accuracy refinements were implemented with regard to the sand transport formulation used in the sand transport module (Sisyphe). Here, a parameterisation of the results from the UWB 1DV sand transport ‘research’ model, for the conditions in the Dyfi Estuary, has been introduced, allowing Sisyphe to provide greater realism in the morphological predictions. The model predictions are presented along with a discussion of the success/failure and limitations of the modelling methods applied.  相似文献   
77.
The Fourier techniques of Paper I have been exhaustively calibrated using Unno's results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic field strengths and inclination angles can be measured very accurately from noisy, saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of our error analysis are presented graphically.  相似文献   
78.
The size-frequency-distributions of different chondrule types in the Qingzhen, Kota-Kota and Allan Hills A77156 EH3 chondrites were determined by petrographic analysis of thin sections and, in the case of Qingzhen, by examination of large separated chondrules. EH chondrules are considerably smaller than L and LL chondrules and are probably slightly smaller than H, CM and CO chondrules. In the EH3 chondrites, radial pyroxene (RP) chondrules are somewhat (85% confidence level) larger than cryptocrystalline (C) chondrules, nonporphyritic chondrules have a broader size-frequency-distribution than porphyritic chondrules, and porphyritic olivine-pyroxene (POP) chondrules are considerably (98% confidence level) larger than porphyritic pyroxene (PP) chondrules. The larger size of RP chondrules relative to C chondrules in EH3 chondrites may be due to a tendency of the chondrule-forming mechanism not to have heated large precursor aggregates above the liquidus. Consequent retention of numerous relict grains would have caused these objects to develop RP rather than C textures upon cooling. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the smaller chondrule size-fractions may have been caused by preferential disruption of large nonporphyritic chondrule droplets. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the larger chondrule size-fractions is problematic. The larger size of POP relative to PP chondrules is due to reaction of fine-grained olivine with free silica to form pyroxene during mild thermal metamorphism of the whole-rocks.  相似文献   
79.
The Beetaloo Sub-basin, northern Australia, is considered the main depocentre of the 1,000-km scale Mesoproterozoic Wilton package of the greater McArthur Basin – the host to one of the oldest hydrocarbon global resources. The ca. 1.40–1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub-basin, together, record ca. 500 million years of depositional history within the North Australia Craton. Whole-rock shale Sm–Nd and Pb isotope data from these sediments reveal sedimentary provenance and their evolution from ca. 1.35 to 0.85 Ga. Furthermore, these data, together with shale major/trace elements data from this study and pyrolysis data from previous publications, are used to develop a dynamic tectonic geography model that links the organic carbon production and burial to an enhanced weathering of nutrients from a large igneous province. The ca. 1.35–1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus that passes up, into more isotopically juvenile Pb values towards the top of the formation. The increase in juvenile compositions coincides with elevated total organic carbon (TOC) contents of these sediments. The coherently enriched juvenile compositions and TOC the upper portions of the Kyalla Formation are interpreted to reflect an increase in nutrient supply associated with the weathering of basaltic sources (e.g. phosphorous). Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim–Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence-bounding unconformity is here interpreted to reflect uplift and erosion of the Derim Derim–Galiwinku LIP, rather than an influx of southern Musgrave sources. A new baddeleyite crystallisation age of 1,312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The unconformably overlying lower and upper Jamison sandstones are at least 300 million years younger than the Kyalla Formation and were sourced from the Musgrave Province. An up-section increase in isotopically juvenile compositions seen in these rocks is interpreted to document the progressive exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter-basin correlations.  相似文献   
80.
We present numerical investigations into the formation of massive stars from turbulent cores of density structure  ρ∝ r −1.5  . The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra   P ∝ k −4  and   P ∝ k −3.5  , and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density  (10−14 g cm−3)  . Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号