首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5227篇
  免费   234篇
  国内免费   56篇
测绘学   114篇
大气科学   406篇
地球物理   1336篇
地质学   1837篇
海洋学   502篇
天文学   785篇
综合类   22篇
自然地理   515篇
  2022年   31篇
  2021年   69篇
  2020年   66篇
  2019年   79篇
  2018年   119篇
  2017年   109篇
  2016年   163篇
  2015年   148篇
  2014年   157篇
  2013年   267篇
  2012年   183篇
  2011年   260篇
  2010年   185篇
  2009年   264篇
  2008年   224篇
  2007年   211篇
  2006年   215篇
  2005年   184篇
  2004年   169篇
  2003年   159篇
  2002年   162篇
  2001年   85篇
  2000年   101篇
  1999年   83篇
  1998年   85篇
  1997年   65篇
  1996年   68篇
  1995年   87篇
  1994年   81篇
  1993年   62篇
  1992年   66篇
  1991年   55篇
  1990年   72篇
  1989年   63篇
  1988年   61篇
  1987年   65篇
  1986年   62篇
  1985年   70篇
  1984年   92篇
  1983年   70篇
  1982年   73篇
  1981年   59篇
  1980年   69篇
  1979年   55篇
  1978年   56篇
  1977年   41篇
  1976年   50篇
  1975年   52篇
  1974年   39篇
  1973年   54篇
排序方式: 共有5517条查询结果,搜索用时 15 毫秒
931.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
932.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   
933.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
934.
Bacteria and viruses are ubiquitous in subterranean aquatic habitats. Bacterial abundance is known to vary with depth in aquifers; however, whether viral abundance varies with depth is less well known. Here we use flow cytometry (FCM) to enumerate bacteria and virus‐like particles (VLP) from groundwater depth profiles. Groundwater samples were obtained from a set of nested piezometers from depths of 15, 30, 45, 60, 80, and 90 m and bacteria and VLP abundances were determined in purged aquifer water and unpurged water at each slot depth. Mean bacterial abundance (cells / mL) was not significantly different in unpurged water (3.2 × 105) compared to purged water (1.4 × 105); however, mean VLP abundance (particles / mL) was significantly greater in unpurged water (4.4 × 105) compared to purged water (2.3 × 105). Purged water was used to investigate the aquifer depth profile and bacterial and VLP abundances were observed to vary significantly between depths. The virus‐bacteria ratio was determined and was observed to steadily increase with depth. Overall, our data indicate the dynamic nature of bacterial and viral abundances in subsurface environments which should be considered when designing groundwater microbial sampling methodologies.  相似文献   
935.
During September 2008 and February 2009, the NR/V Alliance extensively sampled the waters of the Sea of Marmara within the framework of the Turkish Straits System (TSS) experiment coordinated by the NATO Undersea Research Centre. The observational effort provided an opportunity to set up realistic numerical experiments for modeling the observed variability of the Marmara Sea upper layer circulation at mesoscale resolution over the entire basin during the trial period, complementing relevant features and forcing factors revealed by numerical model results with information acquired from in situ and remote sensing datasets. Numerical model solutions from realistic runs using the Regional Ocean Modeling System (ROMS) produce a general circulation in the Sea of Marmara that is consistent with previous knowledge of the circulation drawn from past hydrographic measurements, with a westward meandering current associated with a recurrent large anticyclone. Additional idealized numerical experiments illuminate the role various dynamics play in determining the Sea of Marmara circulation and pycnocline structure. Both the wind curl and the strait flows are found to strongly influence the strength and location of the main mesoscale features. Large displacements of the pycnocline depth were observed during the sea trials. These displacements can be interpreted as storm-driven upwelling/downwelling dynamics associated with northeasterly winds; however, lateral advection associated with flow from the Straits also played a role in some displacements.  相似文献   
936.
937.
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity–duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings.Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10 min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3 h, with most of the rain falling in less than 1 h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D 0.7 and I = 9.5D 0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours).Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16 h, of low-intensity (2–10 mm/h) rainfall. The storms lasted between 5.5 and 33 h, with average intensities between 1.3 and 20.4 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D0.4, and I = 7.2D0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D0.5 is approximately 25 mm/h higher than that developed for the first year following fires.The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes.  相似文献   
938.
939.
Seismic amplitude tomography for crustal attenuation beneath China   总被引:1,自引:0,他引:1  
Amplitude tomography reconstructs seismic attenuation directly from recorded wave amplitudes. We have applied the tomography to amplitude data reported in the 'Annual Bulletin of Chinese Earthquakes' and interpreted the regionally varying crustal attenuation in terms of tectonics. The seismic amplitudes were originally recorded for determining the M L and M S magnitudes. They generally correspond to the maximum amplitudes of the horizontal components of the short-period S waves and intermediate-period Rayleigh waves. Both sets of measurements are sensitive to crustal structure. The peak amplitudes from M L amplitudes spread spherically with significant dispersion and scattering. M S amplitudes show cylindrical spreading with little dispersion. Average crustal Q values for attenuation at 1 Hz are 737 and 505 for M L and M S, respectively, with substantial regional variations. Frequency dependence in the attenuation is also indicated. Regions with the lowest attenuation (high Q values) are beneath the south China Block, Sichuan Basin, Ordos Platform, the Daxinganling and the Korea Craton. These tend to be tectonically inactive regions, which are generally dominated by intrusive and cratonic rocks in the upper crust. Regions with the highest attenuation (low Q values) are beneath Bohai Basin, Yunnan, eastern Songpan-Ganzi Terrain, margins of the Ordos platform and the Qilian Shan. These are predominantly active basins, grabens and fold belts. The continental margin also highly attenuates both S and surface waves.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号