首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
大气科学   2篇
地球物理   10篇
地质学   5篇
海洋学   32篇
天文学   6篇
综合类   1篇
自然地理   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
51.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   
52.
53.
54.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   
55.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   
56.
The cold-water belt (CWB) is frequently formed off the Soya Warm Current (SWC) during summer and autumn. The detailed distribution of the flow and temperature fields observed by the R/V Sinyo-maru in the summer of 2001 captured the structures of the SWC and the CWB. The temperature and density distributions showed that the vertical distribution of the CWB is associated with the upwelling formed off the SWC. Numerical experiments using a two-layer model with realistic bottom topography have been performed to understand the formation mechanism of CWB and the upwelling structure off the current. In the experiment, the sea level difference between the Japan Sea and the Okhotsk Sea, and baroclinic flow assuming the Tsushima Warm Current were given along the open boundary. The numerical model well reproduces the current system of the SWC and upwelling region off it. The upwelling region is formed at the Soya Strait first, and then it spreads on the offshore side along the SWC as a developing current system. Analysis of the model data indicated that the geostrophic balance mainly dominates in the current system, while convergence of the bottom Ekman transport due to the SWC forms the upwelling region as the secondary circulation. In addition, the advection effect due to the SWC is found to strengthen the upwelling.  相似文献   
57.
Mooring observations using ADCP, electromagnetic current meters and thermometers were performed to clarify the vertical and horizontal structure of coastal-trapped waves (CTWs) on continental shelf and slope on the eastern side of Sagami Bay, Japan, in August and September 2003. A strong inflow associated with CTW caused by Typhoon 0315 (CTW15) was observed with remarkable downwelling. The maximum current due to CTW15 was over 100 cm s−1, confined to the upper layer shallower than 90 m. The CTW (CTW10) induced by Typhoon 0310, was associated with the coastal upwelling and maximum outflow was 33 cm s−1; the currents were extended near the bottom at 230 m depth. Remarkable discrepancies were found between the current structures of CTWs. CTW15 was explained by superposing the second CTW mode on the first CTW mode, whereas CTW10 was explained by the first CTW mode. The generation and propagation processes of both CTWs were reproduced by numerical experiments using a three-dimensional level model. The model results indicated that the difference of modal characteristics between CTW15 and CTW10 already exists in the CTW generation region and are due to difference of the wind direction, i.e., the typhoon’s path.  相似文献   
58.
Current measurements were made at five moored stations over the continental shelf off the San'in coast of the Japan Sea for a month in the summer of 1980 to study the vertical structure of the nearshore branch of the Tsushima Current. The time-mean current for the observational period is 20 to 25 cm sec–1 eastward near the surface and about 10 cm sec–1 westward near the sea bottom except at the shallowest station. The time-mean current,i.e. the nearshore branch of the Tsushima Current is mainly due to the baroclinic modes. The currents are less variable in the first half of the observational period, but fluctuate with a several-day period in the latter half. The obtained current data were decomposed into barotropic and baroclinic modes to investigate the detailed characteristics of the fluctuations. In the latter half, the current fluctuations of the two modes with about a 5-day period are well correlated with each other, as the baroclinic mode lagging behind the barotropic mode by 12 hr. The barotropic current fluctuation is correlated to the sea level, with the former leading the latter by about 12 hr. The baroclinic current is correlated to the temperature at the subsurface layer with a shorter time lag.  相似文献   
59.
Abstract

Flow regimes play an important role in sustaining biodiversity in river ecosystems. However, the effects of flow regimes on riverine fish have not been clearly described. Therefore, we propose a new methodology to quantitatively link habitat conditions (such as flow indices and physical habitat conditions) to the occurrence probability (OP) of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model in order to estimate the OP of fish, with particular attention to flow regime. A generalized linear model was used to evaluate the relationship between the probabilities of fish occurrence and major environmental factors in river sections. A geomorphology-based hydrological model was adopted to simulate river discharge, which was used to calculate 10 flow indices. The occurrence probabilities of 50 fish species in the Sagami River in Japan were modelled. For the prediction accuracy, field survey results that included at least five observations of both the presence and the absence of each species were required to obtain relatively reliable prediction (accuracy > 60%). Using the developed model, important habitat conditions for each species were identified, which showed the importance of low-flow events for more than 10 species, including Hypomesus nipponensis and Rhinogobius fluviatilis. The model also confirmed the positive effects of natural flow and the negative effect of river-crossing structures, such as dams and weirs, on the OP of most species. The suggested approach enables us to evaluate and project the ecological consequences of water resource management policy. The results demonstrate the applicability of the fish distribution model to provide quantitative information on the flow required to maintain fish communities.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Sui, P., Iwasaki, A., Saavedra, V.O.C., and Yoshimura, C., 2013. Modelling basin-scale distribution of fish occurrence probability for assessment of flow and habitat conditions in rivers. Hydrological Sciences Journal, 59 (3–4), 618–628.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号