首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   17篇
  国内免费   10篇
测绘学   2篇
大气科学   22篇
地球物理   132篇
地质学   179篇
海洋学   136篇
天文学   82篇
综合类   6篇
自然地理   22篇
  2023年   5篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   10篇
  2016年   15篇
  2015年   3篇
  2014年   23篇
  2013年   25篇
  2012年   13篇
  2011年   17篇
  2010年   22篇
  2009年   24篇
  2008年   28篇
  2007年   35篇
  2006年   26篇
  2005年   30篇
  2004年   13篇
  2003年   15篇
  2002年   8篇
  2001年   15篇
  2000年   10篇
  1999年   22篇
  1998年   15篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   4篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   7篇
  1978年   10篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1970年   5篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
71.
The eucrites and diogenites are meteorites that probably originate from asteroid 4-Vesta. The upper part of the crust of this body is certainly composed of eucrites which are basaltic or gabbroic rocks. Diogenites are ultramafic cumulates whose relationships with eucritic lithologies are unknown. Here, we show that the orthopyroxenes of some diogenites display very deep negative Eu anomalies (Eu/Eu∗ close to 0.1 or lower). The contamination of the parental magmas of diogenites by melts derived by partial melting of the eucritic crust can satisfactorily explain the range of the Eu anomalies displayed by diogenites. Thus, these anomalies are the first firm indication that parental melts of diogenites have intruded the eucritic crust, and consequently are younger than eucrites.  相似文献   
72.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
73.
The growth rate of ringwoodite reaction rims between MgSiO3 perovskite and periclase was investigated at 22.5 GPa and 1,800 °C for 1–24 h using the Kawai-type high-pressure apparatus. The reaction was likely to proceed by a diffusion-controlled mechanism in which the dominant diffusion mechanism was grain-boundary diffusion. The reaction constant (the width of the ringwoodite reaction rim squared divided by time) determined from these experiments was between 1.3 × 10?15 and 5.6 × 10?15 m2/s. A Pt inert marker experiment indicated that the MgO component migrated faster than the SiO2 component in ringwoodite. Thus, either Mg or O having the slower diffusion rate controlled the reaction. Because previous diffusion studies have shown that diffusion rates of O are slower than those of Mg, O would be a rate-controlling element for ringwoodite formation from MgSiO3 perovskite and periclase. The growth rate appeared to be too fast to explain the observed topographic rise (~10 km) inside mantle plumes at the 660-km discontinuity.  相似文献   
74.
75.
Journal of Paleolimnology - Sub-annual-scale environmental and ecosystem changes since the mid-18th century were reconstructed in a semi-closed lagoon, Lake Hiruga, located along the Sea of Japan...  相似文献   
76.
We describe the method and the result of a new experiment to obtain velocity distribution of fine ejecta fragments, from a few to a hundred microns in size, produced from basalt targets by impacts of nylon projectiles at a velocity of 3.7 km s−1. The size distribution of holes perforated by the ejecta fragments on thin films and foils placed around the targets was investigated, and the size-velocity relation was determined with the aid of an empirical formula for threshold penetration (McDonnell and Sullivan, Hypervelocity Impacts in Space, Unit for Space Sciences, University of Kent, 1992). The velocity of the fastest fragments, at a given size, is from the extrapolation of the size-velocity relation for 1–100 mm fragments (Nakamura and Fujiwara, Icarus92, 132–146, 1991; Nakamura et al, Icarus100, 127–135, 1992). The laboratory results are also compared with those obtained from the study of secondary craters around large lunar craters (Vickery, Icarus67, 224–236, 1986, Geophys. Res. Lett. 14, 726–729, 1987). All these data provide a smooth size-velocity relationship in the normalized fragment size range of four orders of magnitude.  相似文献   
77.
Abstract— We have investigated 10 new specimens of the Millbillillie eucrite to study its textures and mineral compositions by electron probe microanalyser and scanning electron microscope. Although originally described as having fine-grained texture, the new specimens show diversity of texture. The compositions (Mg/Fe ratios) of the host pigeonites and augite lamellae are homogeneous, respectively, in spite of the textural variation. In addition to their chemical homogeneity, pyroxenes in coarse and fine-grained clasts are partly inverted to orthopyroxene. Chemical zoning of plagioclase during crystal growth is preserved. This eucrite includes areas of granulitic breccias and impact melts. Large scale textures show a subparallel layering suggesting incomplete mixing and deposition of impact melt and lithic fragments. An 39Ar-40Ar age determination for a coarse-grained clast indicates a strong degassing event at 3.55 ± 0.02 Ga. We conclude that Millbillillie is among the most equilibrated eucrites produced by thermal annealing after impact brecciation. According to the classification of impact breccias, Millbillillie can be classified as a mixture of granulitic breccias and impact melts. The last significant thermal event is characterized by network-like glassy veins that run through clasts and matrices. Consideration of textural observations and requirements for Ar-degassing suggests that the 39Ar-40Ar age could in principle date either the earilier brecciation and annealing event or the event which produced the veins.  相似文献   
78.
<正>Plume-type is a new branch of ophiolite classification introduced by Dilek and Furnes(2011;GSAB,123,387-).Its most typical example is the komatiite-basalt-gabbrowehrlite assemblage that is exposed on the Gorgona Island off Colombia,South America and is interpreted as a part of the Caribbean large igneous province(LIP).Analogous  相似文献   
79.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   
80.
Over the past few years, our group has been developing hydrodynamic models to simulate formation of the Eagle Nebula pillars. The true test of any model is, of course, how well it can reproduce the observations. Here, we discuss how we go about testing our models against observations. We describe the process by which we “observe” the model data to create synthetic maps. We show an example of this technique using one of our model runs and compare the resultant synthetic map to the real one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号