首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  国内免费   4篇
测绘学   1篇
大气科学   13篇
地球物理   24篇
地质学   48篇
海洋学   36篇
天文学   15篇
综合类   5篇
自然地理   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   14篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   3篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
Preferred orientation of the dominant phyllosilicate phase (serpentine) in the matrix of the Murchison meteorite (C2) was determined by X-ray pole figure goniometry. The basal plane (001) of the phyllosilicate shows a clear preferred orientation of an axial concentration type. The preferred orientation is very weak in comparison with the orientations of known terrestrial tectonites, and it resembles the weakest case observed in the loosely consolidated clayey sediments from the deep ocean bottom. However, gentle sedimentation of platy phyllosilicate grains on a flat surface under a weak gravity field does not generate a sufficient preferred orientation. It is suggested that the preferred orientation in the matrix of Murchison was generated by uniaxial compaction, and the magnitude of strain to give rise to the observed degree of preferred orientation is evaluated as ?9%. There are two possible explanations of the deformation: dynamic compression caused by impact, and static compaction in a parent body. Though the latter case appears to be appropriate in the present case, it is not straightforward, however, to conclude that the suggested deformation is caused by burial compaction along gravity under lithostatic stress in a small primitive parent body.  相似文献   
142.
Methods have been devised for analyzing vertical land movement and seismicity data using two-dimensional Chebychev functions and oblique projections. A filtering operation in the space domain is made possible by use of a two-dimensional Chebychev function. The oblique projections give an intuitive understanding of land deformation. Characteristic aspects of vertical land movement obtained by precise levelling and of the energy release of microearthquakes with depths shallower than 20 km in the northeastern Japan arc were investigated in detail applying these methods.Lineations with wavelength of about 20–60km trending towards NE—SW were found for both the land deformation and the seismicity. It should be noted that this trend is almost perpendicular to the direction of the strain migration and is related to other geophysical information.  相似文献   
143.
Experimental study of syntectonic recrystallization of fine-grained quartz aggregates was carried out in order to simulate the development of some natural microstructures of quartz tectonites and to understand their formation condition. Agate was axially compressed with a constant-strain-rate apparatus. Experiments were conducted at 4 kbar solid confining pressure, 700–1000°C and 10−4-10−6 sec−1 to 10%–45% strain. In all runs, deformation has proceeded under wet condition caused by dehydration of pyrophyllite used as pressure medium.Two different types of microstructure were distinguished in the deformed specimens. One is P-type which is characterized by equant, equidimensional, and polygonal grains. The other is S-type which is characterized by the highly oblate grains with the largest dimension perpendicular to the compression axis. The P-type microstructure is developed at higher temperatures and slower strain rates, while the S-type developed at lower temperatures and faster strain rates. The transition between the S- and P-types is found to be very sharp.  相似文献   
144.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
145.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
146.
In this study, we performed leaching experiments for timescales of hours-to-months in deionized water on fresh volcanic ash from Mt. Etna (Italy) and Popocatépetl (Mexico) volcanos to monitor Fe release as a function of ash mineral chemistry and size, with the aim of clarifying Fe release mechanisms and eventually evaluating the impact of volcanic ash on marine and lacustrine environments. To define sample mineralogy and Fe speciation, inclusive characterization was obtained by means of XRF, SEM, XRPD, EELS and Mössbauer spectroscopies. For Etna and Popocatépetl samples, glass proportions were quantified at 73 and 40%, Fe2O3 total contents at 11.6–13.2 and 5.8 wt%, and Fe3+/FeTot ratios at 0.33 and 0.23, respectively. Leaching experiments showed that significant amounts of iron, ~?30 to 150 and ~?750 nmol g?1 l?1 for pristine Etna and Popocatépetl samples, respectively, are released within the first 30 min as a function of decreasing particle size (from 1 to 0.125 mm). The Popocatépetl sample showed a very sustained Fe release (up to 10 times Etna samples) all along the first week, with lowest values never below 400 nmol g?1 l?1 and a maximum of 1672 nmol g?1 l?1 recorded after 5 days. This sample, being composed of very small particles (average particle size 0.125 mm) with large surface area, likely accumulated large quantities of Fe-bearing sublimates that quickly dissolved during leaching tests, determining high Fe release and local pH decrease (that contributed to release more Fe from the glass) at short timescale (hours-to-days). The fractional Fe solubility (FeS) was 0.004–0.011 and 0.23% for Etna and Popocatépetl samples, respectively, but no correlation was found between Fe released in solution and either ash Fe content, glass/mineral ratio or mineral assemblage. Results obtained suggest that volcanic ash chemistry, mineralogy and particle size assume a relevant role on Fe release mostly in the medium-to-long timescale, while Fe release in the short timescale is dominated by dissolution of surface sublimates (formed by physicochemical processes occurring within the eruption plume and volcanic cloud) and the effects of such a dissolution on the local pH conditions. For all samples, a moderate to sustained Fe release occurred for leaching times comparable with their residence time within the euphotic zone of marine and lacustrine environments (variable from few minutes to few hours), revealing their possible contribution to increase Fe bioavailability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号