首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
测绘学   1篇
大气科学   2篇
地球物理   26篇
地质学   22篇
海洋学   9篇
天文学   14篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2015年   3篇
  2014年   4篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
71.
Abstract: The gold content in siliceous deposits formed from geothermal waters at the Hatchobaru geothermal power station in central Kyushu, Japan, was determined by inductively coupled plasma quadrupole mass spectrometry (ICP–MS). It ranges from 1.3 to 4.6 mg/kg. The highest gold content was obtained from the siliceous deposit formed from acidic waters. In this siliceous deposit, hydrous iron(III) oxide of amorphous state is a major constituent, suggesting that hydrous iron(III) oxide might play an important role when gold is concentrated into siliceous deposits formed from acidic and iron-rich geothermal waters.  相似文献   
72.
Earthquake‐induced structural pounding frequently causes serious damage to buildings, particularly at the expansion joint (hereafter, EXPJ) between adjacent buildings. Because the EXPJ width in existing reinforced concrete buildings is usually very small, typically about 5 cm for school buildings in Japan, collision avoidance cannot be achieved by seismic retrofitting. This paper presents an experimental investigation into an effective method for reducing severe structural damage due to pounding at the EXPJ between narrowly separated buildings. The method involves inserting a shock‐absorbing material such as rubber into the EXPJ gap. The efficiency of the proposed method is evaluated by laboratory shaking tests using two model buildings. Furthermore, a lumped mass model is used to carry out a collision analysis in order to numerically investigate the influence of such a shock‐absorbing material. Both the numerical and experimental results confirm the effectiveness of the proposed approach. The validity of the proposed method is also demonstrated by numerical simulation of adjacent 10‐story steel buildings with an EXPJ width of 5 cm. The force, acceleration and velocity produced by earthquake‐induced structural pounding are found to be remarkably mitigated by inserting a soft shock‐absorbing material into the EXPJ gap. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
73.
Post‐earthquake safety evaluation of steel moment‐resisting frames mainly relies on the inspection of seismic damage to beam–column connections. Recently, in order to evaluate seismic damage of steel connections in a prompt and precise manner, a local damage evaluation method based on dynamic strain responses has been proposed and receives attention. In the evaluation method where strain responses are measured by piezoelectric strain sensors, a strain‐based damage index has been developed for evaluating individual seismic beam damage in a steel frame. However, for a steel frame suffering multiple beam damages, the damage index deteriorates its performance in identifying small damages with the presence of neighboring severe damages because of the moment redistributions induced by larger damages. This paper presents a decoupling algorithm that removes the issue of damage interaction and improves the performance of the damage index. The decoupling algorithm was derived on the basis of damage‐induced moment release and redistribution mechanism. The effectiveness of the decoupling algorithm was numerically and experimentally investigated using a nine‐story steel frame model and a large scale five‐story steel frame testbed that can simulate multiple fractures at beam ends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
74.
Akiko  Omura  Koichi  Hoyanagi  Satoko  Ishikawa 《Island Arc》2006,15(3):355-365
Abstract   Both marine and terrigenous organic matter are deposited in shelf and continental slope environments. In the present study, the relationship between environmental changes in the Choshi area and the sedimentation of organic matter was examined. The sediments of the Choshi core were deposited on a shelf environment and their lithology and ichnofacies, as well as the composition of the contained kerogen (insoluble organic matter) indicate a shallowing upward succession. The organic matter preserved in the sediments is of both marine and terrigenous origin, on the basis of C/N ratios (5.90–9.45), δ13C values (−21.6‰−24.6‰) and kerogen microscopy. The total organic carbon (TOC) content (0.39–1.08%) of the sediments shows a positive correlation with the increase of terrigenous organic matter before 500 ka, but decreases (0.26–0.61%) after 500 ka as the shelf environment becomes shallower because of dilution, caused by the input of terrigenous inorganic clasts, and oxidation. The variation in TOC contents was thus influenced by the increasing sedimentation rate of terrigenous materials, including both organic and inorganic particles as the basin filled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号