首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   12篇
地质学   55篇
海洋学   12篇
天文学   14篇
自然地理   5篇
  2024年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1898年   1篇
  1897年   1篇
排序方式: 共有110条查询结果,搜索用时 390 毫秒
91.
The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.  相似文献   
92.
93.
Summary Mesozoic melilite-bearing ultramafic lamprophyres are developed as sill, dyke and plug-like intrusive bodies in the East Antarctic Beaver Lake area. They consist of varying amounts of olivine, melilite, phlogopite, nepheline, titanomagnetite and perovskite as major phases, accompanied by minor amounts of apatite, carbonate, spinel, glass and, rarely, monticellite. The rocks are mineralogically and geochemically broadly similar to olivine melilitites, differing in higher CO2 and modal phlogopite and carbonate contents. The ultramafic lamprophyres are MgO-rich (13.4–20.5 wt%) and SiO2-poor (32.8–37.2 wt%), indicative of a near-primary nature. Major and trace element features are consistent with minor fractionation of olivine and Cr-spinel from melts originating at depths of 130–140 km. Primary melts originated by melting of upper mantle peridotite which had been veined by phlogopite + carbonate + clinopyroxene-bearing assemblages less than 200 Ma before eruption. The presence of the veins and their time of formation is required to explain high incompatible trace element contents and growth of 87Sr/86Sr, leaving 143Nd/144Nd unaffected. The major element, compatible trace element, and most radiogenic isotope characteristics are derived from melting of the wall-rock peridotite. The depth of about 130 km is indicated by the presence of phlogopite rather than amphibole in the veins, by control of the REE pattern by residual garnet, by the high MgO content of the rocks, and by the expected intersection of the rift-flank geotherm with the solidus at this depth. The higher CO2 contents than are characteristic for olivine melilitites favoured the crystallization of melilite at crustal pressures, and suppressed the crystallization of clinopyroxene. The Beaver Lake ultramafic lamprophyres are a distal effect of the breakup of Gondwanaland, too distal to show a geochemical signature of the Kerguelen plume. Upward and outward movement of the asthenosphere-lithosphere boundary beneath the Lambert-Amery rift led first to the production of phlogopite- and carbonate-rich veins, and later to the generation of the ultramafic lamprophyres themselves. Received March 31, 2000; revised version accepted September 3, 2001  相似文献   
94.
New U-Pb perovskite ages reveal that diamondiferous ultramafic lamprophyre magmas erupted through the Archean crust of northern Labrador and Quebec (eastern Canada) between ca. 610 and 565 Ma, a period of strong rifting activity throughout contiguous Laurentia and Baltica. The observed Torngat carbonate-rich aillikite/carbonatite and carbonate-poor mela-aillikite dyke varieties show a large spread in Sr-Nd-Hf-Pb isotope ratios with pronounced correlations between isotope systems. An isotopically depleted component is identified solely within aillikites (87Sr/86Sri = 0.70323-0.70377; εNdi = +1.2-+1.8; εHfi = +1.4-+3.5; 206Pb/204Pbi = 18.2-18.5), whereas some aillikites and all mela-aillikites range to more enriched isotope signatures (87Sr/86Sri = 0.70388-0.70523; εNdi = −0.5 to −3.9; εHfi = −0.6 to −6.0; 206Pb/204Pbi = 17.8-18.2). These contrasting isotopic characteristics of aillikites/carbonatites and mela-aillikites, along with subtle differences in their modal carbonate, SiO2, Al2O3, Na2O, Cs-Rb, and Zr-Hf contents, are consistent with two distinctive metasomatic assemblages of different age in the mantle magma source region.Integration of petrologic, geochemical, and isotopic information leads us to propose that the isotopically enriched component originated from a reduced phlogopite-richterite-Ti-oxide dominated source assemblage that is reminiscent of MARID suite xenoliths. In contrast, the isotopically depleted component was derived from a more oxidized phlogopite-carbonate dominated source assemblage. We argue that low-degree CO2-rich potassic silicate melts from the convective upper mantle were preferentially channelled into an older, pre-existing MARID-type vein network at the base of the North Atlantic craton lithosphere, where they froze to form new phlogopite-carbonate dominated veins. Continued stretching and thinning of the cratonic lithosphere during the Late Neoproterozoic remobilized the carbonate-rich vein material and induced volatile-fluxed fusion of the MARID-type veins and the cold peridotite substrate. Isotopic modelling suggests that only 5-12% trace element contribution from such geochemically extreme MARID-type material is required to produce the observed compositional shift from the isotopically most depleted aillikites/carbonatites towards enriched mela-aillikites.We conclude that cold cratonic mantle lithosphere can host several generations of contrasting vein assemblages, and that each may have formed during past tectonic and magmatic events under distinctively different physicochemical conditions. Although cratonic MARID-type and carbonate-bearing veins in peridotite can be the respective sources for lamproite and carbonatite magmas when present as the sole metasome, their concomitant fusion in a complex source region may give rise to a whole new variety of deep volatile-rich magmas and we suggest that orangeites (formerly Group 2 kimberlites), kamafugites, and certain types of ultramafic lamprophyre are formed in this manner.  相似文献   
95.
The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data indicate derivation of the ore leads from the country rocks, which themselves show evidence for contributions from relatively unradiogenic, mantle-like lead, and more evolved or crustal lead. Geological relationships, and stable and radiogenic isotopic data, suggest that the Barite Hill gold deposit formed on the Late Proterozoic seafloor through exhalative hydrothermal processes similar to those that were responsible for the massive sulfide deposits of the Kuroko district, Japan. On the basis of similarities with other gold-rich massive sulfide deposits and modern seafloor hydrothermal systems, the gold at Barite Hill was probably introduced as an integral part of the formation of the massive sulfide deposit. Received: 17 August 1998 / Accepted: 12 October 2000  相似文献   
96.
An examination of the relationship between large organizations and local labour markets which draws attention to the role of the extended internal labour market (EILM). This paper explores recruitment strategies in the local labour market amongst 52 major employers in the metal sectors in the Sheffield local labour market. It shows how dependence on the external labour market rather than the internal labour market varies with the different occupations recruited within the local area and that, in some occupations, the EILM plays an important role. Where recruitment difficulties are experienced there are a variety of responses, all of which have particular implications for the amount and type of labour sought from the external labour market. The paper concludes by arguing for a greater emphasis on the recruitment strategies of larger firms in employer surveys to provide new insights into the operation of local labour markets and, in particular, the operation of the EILM.  相似文献   
97.
High temporal resolution measurements of physical and bio-optical variables were made in the upper ocean using a mooring located at 0°, 140°W from 9 February 1992 to 15 March 1993 as part of the equatorial Pacific Ocean (EgPac) study. Chlorophyll and primary productivity time-series records were generated using the mooring data. Primary productivity varied by about 50% around the mean on time scales of weeks and by over a factor of four within our observational period. The mooring observations encompassed both El Niho and cool conditions. Kelvin waves were evident during the El Nifio phase, and tropical instability waves (TIWs) were dominant during the cool phase. The two extreme conditions also were observed concurrently with complementary ship-based measurements. In addition, bio-optical drifters provided simultaneous spatial data concerning net phytoplankton growth rates during passage of a TIW. The collective data sets have been used to examine the causes of the observed variability in phytoplankton biomass and productivity. Our joint results and analyses appear to support the hypothesis that the vertical transport of iron into the upper layer and primary production rates are modulated by variability of the depth of the Equatorial Undercurrent and by equatorial longwaves. In particular, our results are consonant with the suggestion of Barber et al. (1996) that passage of a TIW may be considered to be a natural analog of a small iron enrichment experiment. Predicting primary productivity and, thus, carbon flux in the equatorial Pacific requires continuous, long-term observations of a few physical, biological, and optical properties that can be used to parameterize the biological variability.  相似文献   
98.
The error in physically-based rainfall-runoff modelling is broken into components, and these components are assigned to three groups: (1) model structure error, associated with the model’s equations; (2) parameter error, associated with the parameter values used in the equations; and (3) run time error, associated with rainfall and other forcing data. The error components all contribute to “integrated” errors, such as the difference between simulated and observed runoff, but their individual contributions cannot usually be isolated because the modelling process is complex and there is a lack of knowledge about the catchment and its hydrological responses. A simple model of the Slapton Wood Catchment is developed within a theoretical framework in which the catchment and its responses are assumed to be known perfectly. This makes it possible to analyse the contributions of the error components when predicting the effects of a physical change in the catchment. The standard approach to predicting change effects involves: (1) running “unchanged” simulations using current parameter sets; (2) making adjustments to the sets to allow for physical change; and (3) running “changed” simulations. Calibration or uncertainty-handling methods such as GLUE are used to obtain the current sets based on forcing and runoff data for a calibration period, by minimising or creating statistical bounds for the “integrated” errors in simulations of runoff. It is shown that current parameter sets derived in this fashion are unreliable for predicting change effects, because of model structure error and its interaction with parameter error, so caution is needed if the standard approach is to be used when making management decisions about change in catchments.  相似文献   
99.
The participation of different vegetation types within the physical climate system is investigated using a coupled atmosphere-biosphere model, CCM3-IBIS. We analyze the effects that six different vegetation biomes (tropical, boreal, and temperate forests, savanna, grassland and steppe, and shrubland/tundra) have on the climate through their role in modulating the biophysical exchanges of energy, water, and momentum between the land-surface and the atmosphere. Using CCM3-IBIS we completely remove the vegetation cover of a particular biome and compare it to a control simulation where the biome is present, thereby isolating the climatic effects of each biome. Results from the tropical and boreal forest removal simulations are in agreement with previous studies while the other simulations provide new evidence as to their contribution in forcing the climate. Removal of the temperate forest vegetation exhibits behavior characteristic of both the tropical and boreal simulations with cooling during winter and spring due to an increase in the surface albedo and warming during the summer caused by a reduction in latent cooling. Removal of the savanna vegetation exhibits behavior much like the tropical forest simulation while removal of the grassland and steppe vegetation has the largest effect over the central United States with warming and drying of the atmosphere in summer. The largest climatic effect of shrubland and tundra vegetation removal occurs in DJF in Australia and central Siberia and is due to reduced latent cooling and enhanced cold air advection, respectively. Our results show that removal of the boreal forest yields the largest temperature signal globally when either including or excluding the areas of forest removal. Globally, precipitation is most affected by removal of the savanna vegetation when including the areas of vegetation removal, while removal of the tropical forest most influences the global precipitation excluding the areas of vegetation removal.  相似文献   
100.
In this study we investigate the impact of large-scale oceanic forcing and local vegetation feedback on the variability of the Sahel rainfall using a global biosphere-atmosphere model, the coupled GENESIS-IBIS model, running at two different resolutions. The observed global sea surface temperature in the twentieth century is used as the primary model forcing. Using this coupled global model, we experiment on treating vegetation as a static boundary condition and as a dynamic component of the Earth climate system. When vegetation is dynamic, the R30-resolution model realistically reproduces the multi-decadal scale fluctuation of rainfall in the Sahel region; keeping vegetation static in the same model results in a rainfall regime characterized by fluctuations at much shorter time scales, indicating that vegetation dynamics act as a mechanism for persistence of the regional climate. Even when vegetation dynamics is included, the R15 model fails to capture the main characteristics of the long-term rainfall variability due to the exaggerated atmospheric internal variability in the coarse resolution model. Regardless how vegetation is treated and what model resolution is used, conditions in the last three decades of the twentieth century are always drier than normal in the Sahel, suggesting that global oceanic forcing during that period favors the occurrence of a drought. Vegetation dynamics is found to enhance the severity of this drought. However, with both the observed global SST forcing and feedback from dynamic vegetation in the model, the simulated drought is still not as persistent as that observed. This indicates that anthropogenic land cover changes, a mechanism missing in the model, may have contributed to the occurrence of the twentieth century drought in the Sahel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号