首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   37篇
  国内免费   6篇
测绘学   33篇
大气科学   32篇
地球物理   151篇
地质学   239篇
海洋学   38篇
天文学   89篇
综合类   1篇
自然地理   41篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   18篇
  2018年   23篇
  2017年   23篇
  2016年   30篇
  2015年   23篇
  2014年   21篇
  2013年   34篇
  2012年   21篇
  2011年   31篇
  2010年   21篇
  2009年   37篇
  2008年   25篇
  2007年   31篇
  2006年   27篇
  2005年   25篇
  2004年   21篇
  2003年   16篇
  2002年   17篇
  2001年   8篇
  2000年   13篇
  1999年   7篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1976年   4篇
  1973年   2篇
  1965年   2篇
  1964年   3篇
排序方式: 共有624条查询结果,搜索用时 0 毫秒
111.
Abstract— Studies of two separate stones of the CV3 chondrite Vigarano have revealed the presence of previously unreported occurrences of calcite. In the first stone, calcite occurs as thin veins in a type B CAI. In contrast, observations of the second stone, which was recovered one month after its fall, show three calcite occurrences: networks of veins, vesicle fillings in the fusion crust, and pseudomorphic replacement of augite associated with a porphyritic olivine chondrule. The most common occurrence is as veins ranging in thickness from <1 μm to 25 μm and extending for more than several hundred μm. Some veins crosscut the fusion crust and are connected to a carbonate coating on the exterior of the meteorite. Extensive minor element zoning occurs in carbonate masses, indicating variations in the fluid composition and/or redox potential during carbonate growth. Based on the textural evidence and a comparative study with carbonate veins in the CV3 chondrite Leoville, we conclude that the veins are terrestrial in origin. We propose a model for rapid carbonate formation in which calcite precipitation is driven by hydrolysis and oxidation in the meteorite interior that move the fluid composition to alkaline values. In addition, both stones also contain minor occurrences of carbonate that are not readily explained by terrestrial alteration. Minor carbonate in a type B CAI occurs in the first stone and calcite occurs as pseudomorphic replacement of augite in the second stone. Both of these occurrences appear to be preterrestrial, probably asteroidal in origin.  相似文献   
112.
113.
We investigate the possibility of gravitational capture of planetesimals as temporary or permanent satellites of Uranus and Neptune during the process of planetary growth. The capture mechanism is based in the enhancement of the Hill's sphere of action not only due to the mass acquired by the planet, but also by the variation of the planet-Sun distance as a consequence of the scattering of planetesimals by the planets of the outer solar system. Our calculations indicate that satellite capture was very important, specially during the first stages of the accretion process, contributing in a significant way to the planetary growth.  相似文献   
114.
Linear system theory can be used to model and predict watertable responses to precipitation inputs in an artificially drained field. The response function is mathematically equivalent to the Unit Hydrograph concept familiar to hydrologists. This paper shows that it is possible to derive such response functions, and comments on the problems encountered in their derivation. Response functions for two contrasted sites are presented, and the possibilities for their use discussed.  相似文献   
115.
116.
117.
Investigation of the potential for using sediment fingerprinting to integrate both spatial provenance and source type information for larger drainage basins appears to be desirable. This contribution presents the results of adopting a composite fingerprinting procedure incorporating statistically verified multicomponent signatures and a multivariate mixing model to provide a preliminary integration of spatial provenance and source type information for the upper and middle reaches of the drainage basins of the Rivers Exe (601 km2) and Severn (4325 km2), UK. A nested approach is employed, whereby spatial provenance is addressed in terms of the distinct sub-basin zones constituting each study area as an entirety, and source type is then characterised within each of these distinct spatial zones in terms of surface (woodland, pasture, cultivated) and subsurface (channel bank) materials. The results demonstrate that the fingerprinting approach possesses considerable potential for integrating spatial provenance and source type information, and hence for improving the resolution of existing sediment source information for larger drainage basins.  相似文献   
118.
Transmission electron microscope studies of fine‐grained rims in three CM2 carbonaceous chondrites, Y‐791198, Murchison, and ALH 81002, have revealed the presence of widespread nanoparticles with a distinctive core–shell structure, invariably associated with carbonaceous material. These nanoparticles vary in size from ~20 nm up to 50 nm in diameter and consist of a core of Fe,Ni carbide surrounded by a continuous layer of polycrystalline magnetite. These magnetite shells are 5–7 nm in thickness irrespective of the diameter of the core Fe,Ni carbide grains. A narrow layer of amorphous carbon a few nanometers in thickness is present separating the carbide core from the magnetite shell in all the nanoparticles observed. The Fe,Ni carbide phases that constitute the core are consistent with both haxonite and cohenite, based on electron diffraction data, energy dispersive X‐ray analysis, and electron energy loss spectroscopy. Z‐contrast scanning transmission electron microscopy shows that these core–shell magnetite‐carbide nanoparticles can occur as individual isolated grains, but more commonly occur in clusters of multiple particles. In addition, energy‐filtered transmission electron microscopy (EFTEM) images show that in all cases, the nanoparticles are embedded within regions of carbonaceous material or are coated with carbonaceous material. The observed nanostructures of the carbides and their association with carbonaceous material can be interpreted as being indicative of Fischer–Tropsch‐type (FTT) reactions catalyzed by nanophase Fe,Ni metal grains that were carburized during the catalysis reaction. The most likely environment for these FTT reactions appears to be the solar nebula consistent with the high thermal stability of haxonite and cohenite, compared with other carbides and the evidence of localized catalytic graphitization of the carbonaceous material. However, the possibility that such reactions occurred within the CM parent body cannot be excluded, although this scenario seems unlikely, because the kinetics of the reaction would be extremely slow at the temperatures inferred for CM asteroidal parent bodies. In addition, carbides are unlikely to be stable under the oxidizing conditions of alteration experienced by CM chondrites. Instead, it is most probable that the magnetite rims on all the carbide particles are the product of parent body oxidation of Fe,Ni carbides, but this oxidation was incomplete, because of the buildup of an impermeable layer of amorphous carbon at the interface between the magnetite and the carbide phase that arrested the reaction before it went to completion. These observations suggest that although FTT catalysis reactions may not have been the major mechanism of organic material formation within the solar nebula, they nevertheless contributed to the inventory of complex insoluble organic matter that is present in carbonaceous chondrites.  相似文献   
119.
Effective timescales of coupling within fluvial systems   总被引:1,自引:0,他引:1  
This paper presents a review of the coupling concept in fluvial geomorphology, based mainly on previously published work. Coupling mechanisms link the components of the fluvial system, controlling sediment transport down the system and the propagation of the effects of base-level change up the system. They can be viewed at several scales: at the local scale involving within-hillslope coupling, hillslope-to-channel coupling, and within-channels, tributary junction and reach-to-reach coupling. At larger scales, coupling can be considered as zonal coupling, between major zones of the system or as regional coupling, relating to complete drainage basins. These trends are illustrated particularly by the examples of hillslope-to-channel coupling in the Howgill Fells, northwest England, badland systems in southeast Spain, alluvial fans in Spain, USA and UAE, and base-level-induced dissection of Neogene sedimentary basins in southeast Spain. As the spatial scales increase, so do the timescales involved. Effective temporal scales relate to magnitude and frequency characteristics, recovery time and propagation time, the relative importance changing with the spatial scale. For downsystem coupling at the local scale, the first two are important, with propagation time increasing in importance in larger systems, especially in those involving upsystem coupling related to base-level change. The effective timescales range from the individual event, with a return period of decades, through decadal to century timescales for downsystem coupling, to tens to hundreds of thousands of years for the basinwide response to base-level change. The effective timescales influence the relative importance of factors controlling landform development.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号