首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   47篇
  国内免费   6篇
测绘学   37篇
大气科学   67篇
地球物理   233篇
地质学   309篇
海洋学   70篇
天文学   117篇
综合类   2篇
自然地理   55篇
  2024年   3篇
  2023年   5篇
  2022年   3篇
  2021年   18篇
  2020年   17篇
  2019年   21篇
  2018年   26篇
  2017年   29篇
  2016年   35篇
  2015年   31篇
  2014年   27篇
  2013年   43篇
  2012年   31篇
  2011年   39篇
  2010年   32篇
  2009年   52篇
  2008年   33篇
  2007年   40篇
  2006年   44篇
  2005年   38篇
  2004年   30篇
  2003年   29篇
  2002年   31篇
  2001年   14篇
  2000年   17篇
  1999年   15篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1985年   7篇
  1984年   7篇
  1983年   13篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   8篇
  1977年   4篇
  1976年   6篇
  1973年   6篇
  1965年   2篇
  1964年   3篇
排序方式: 共有890条查询结果,搜索用时 15 毫秒
841.
842.
843.
844.
The change of the chemical composition of the near-ground level atmospheric aerosol was studied during two summer episodes by a Lagrangian type of experimental approach. Bulk and single-particle chemical analyses of ions and elements in the particulate phase were deployed. N(-III) and N(V) components were also measured in the gas-phase. The measurements were completed by particle size distributions.Secondary inorganic aerosols (SIA) and fine particles of ≈0.2–0.4 μm size were still elevated 50 km downwind of the city. The direct comparison of transport over the city in contrast to transport over the surrounding areas showed that SIA was formed from emission from the city within less than 3 h. Relative increases, i.e., enrichment during transport were observed for primary and secondary aerosol components. The degree of mixing on the individual particle level increased significantly during transport in the area. In particular, newly emitted carbonaceous particles became internally mixed within hours with pre-existing sulphate particles. Mostly due to secondary aerosol formation the average particle size (mass median diameter) of major constituents of the aerosol was significantly decreased while being transported over 13 h. Given recent insights which link fine particles number and mass concentrations with health risks, the results suggest that rural populations in areas which frequently are located within an urban plume might run an elevated health risk relative to populations in areas not affected by urban plumes.  相似文献   
845.
Ground water discharge and nitrate flux to the Gulf of Mexico   总被引:3,自引:0,他引:3  
Ground water samples (37 to 186 m depth) from Baldwin County, Alabama, are used to define the hydrogeology of Gulf coastal aquifers and calculate the subsurface discharge of nutrients to the Gulf of Mexico. The ground water flow and nitrate flux have been determined by linking ground water concentrations to 3H/3He and 4He age dates. The middle aquifer (A2) is an active flow system characterized by postnuclear tritium levels, moderate vertical velocities, and high nitrate concentrations. Ground water discharge could be an unaccounted source for nutrients in the coastal oceans. The aquifers annually discharge 1.1 +/- 0.01 x 10(8) moles of nitrate to the Gulf of Mexico, or 50% and 0.8% of the annual contributions from the Mobile-Alabama River System and the Mississippi River System, respectively. In southern Baldwin County, south of Loxley, increasing reliance on ground water in the deeper A3 aquifer requires accurate estimates of safe ground water withdrawal. This aquifer, partially confined by Pliocene clay above and Pensacola Clay below, is tritium dead and contains elevated 4He concentrations with no nitrate and estimated ground water ages from 100 to 7000 years. The isotopic composition and concentration of natural gas diffusing from the Pensacola Clay into the A3 aquifer aids in defining the deep ground water discharge. The highest 4He and CH4 concentrations are found only in the deepest sample (Gulf State Park), indicating that ground water flow into the Gulf of Mexico suppresses the natural gas plume. Using the shape of the CH4-He plume and the accumulation of 4He rate (2.2 +/- 0.8 microcc/kg/1000 years), we estimate the natural submarine discharge and the replenishment rate for the A3 aquifer.  相似文献   
846.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   
847.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   
848.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   
849.
The present study is based on a suite of surface samples from exposures of eroded laterite, considered to be Tertiary in age, and nearby soils in the Sahelian region of SW Niger and Burkina Faso. X‐ray fluorescence, X‐ray diffraction, computer‐controlled scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, diffuse UV–visible reflectance spectroscopy and a suite of magnetic measurements have been used to shed light on the origin of the soils and their possible derivation from the adjacent, eroded laterite outcrops. On the basis of the wide range of data obtained, we conclude that the mineralogy and magnetic properties of the soils preclude direct derivation from the laterites without further weathering and modification. Nor does the evidence support the view that the soils have evolved entirely independently, uninfluenced by input from the laterites. The only conclusion that is consistent with all the lines of evidence is that the erosion of the laterites provided at least a significant part of the material upon which soil formation took place. This must have occurred at a time early enough to permit a long period of subsequent soil development during which the iron oxides, specifically haematite and ferrimagnetic minerals, were significantly modified. From this, we infer that eroded material from discontinuous laterite exposures has contributed significantly to the remotely sensed, distinctive reflectance characteristics of the Sahel surfaces. The magnetic properties of the soils provide evidence for the in situ neo‐formation of fine, secondary, pedogenic magnetite/maghemite grains typical of those found in many soils across the Sahel region and elsewhere in both temperate and tropical environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
850.
Soil depth and soil production are highly complicated phenomena, generated from a complex interaction of physical, biological and chemical processes. It has, nevertheless, become increasingly clear that soil formation rates are closely related to chemical weathering rates. Somewhat paradoxically, it is likewise becoming apparent that such biogeochemical reactions as slowly transform rock to soil are limited by physical processes, such as flowing water and the formation of fractures. We have formulated a theoretical approach that relates soil formation rates to chemical weathering rates, and those, likewise, to solute transport rates. For such a theoretical framework to be relevant, the solute transport rates cannot equal those of the flowing water, as is the case in Gaussian solute transport. Rather, solute transport must be slowed in accordance with heavy‐tailed solute arrival time distributions. The inference is that the traditional advection–dispersion equation formulation for solute transport is inadequate in the typically heterogeneous geological media that weather to form soils. Here we examine the implications of this soil production model on the assumption of the approach to steady state. Particularly at slow erosion rates we find that many soil columns are not in equilibrium. This tendency may be accentuated in dry climates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号