首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   10篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   45篇
地质学   91篇
海洋学   6篇
天文学   22篇
综合类   3篇
自然地理   9篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   24篇
  2017年   20篇
  2016年   19篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   11篇
  2009年   12篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1970年   1篇
排序方式: 共有188条查询结果,搜索用时 109 毫秒
91.
92.
93.
This study proposes a solution to the problem of maintaining the performance and sustainability of district-scale, cooling-dominated ground coupled heat pump (GCHP) systems. These systems tend to overheat because heat dissipates slowly in relation to the size of the borefields. To demonstrate this problem, a 2000-borehole field is considered at a district-scale GCHP system in the Upper Midwest, US. The borefield’s ground and fluid temperature responses to its design heating and cooling loads are simulated using computational fluid dynamics implemented by applying the finite volume method. The ground temperature is predicted by applying the thermal loads uniformly over the borefield and simulating heat dissipation to the surrounding geology through conduction coupled with advection due to groundwater flow. The results show that a significant energy imbalance will develop in the ground after the first few years of GCHP operation, even with high rates of groundwater flow. The model presented in this study predicts that the temperature at the center of the borefield will reach 18 °C after 5 years and approximately 50 °C after 20 years of operation in the absence of any mitigation strategies. The fluid temperature in the boreholes is then simulated using a single borehole model to estimate the heat pump coefficient of performance, which decreases as the modeled system heats up. To balance the energy inputs/outputs to the ground—thus maintaining the system’s performance—an operating scheme utilizing cold-water circulation during the winter is evaluated. Under the simulated conditions, this mitigation strategy carries the excess energy out of the borefield. Therefore, the proposed mitigation strategy may be a viable measure to sustaining the operating efficiency of cooling-dominated, district-scale borefields in climates with cold winters.  相似文献   
94.
The Kibyra Fault is considered as the most significant evidence about the existence of the NE–SW-striking left-lateral Burdur-Fethiye Fault Zone in the south-western Anatolia in previous studies. However, recent studies show that there is a shear regime, named the Burdur-Fethiye Shear Zone, dominated by normal and left-lateral oblique normal faults in this region. A large number of ancient cities lie on this zone and many of them have been damaged by ancient earthquakes. One of these ancient cities is the ancient city of Kibyra. Most of previous studies suggest the Kibyra Fault depending on the damage in the city. However, the closest fault is located on the western side of the city and the earthquake damage was most likely caused by ground shaking. In this study, the existence of the supposed Kibyra Fault is discussed by integrating field studies, geological maps, trench data, digital elevation model and geomorphological analysis. In conclusion, it is understood that there is no evidence directly indicating a 35-km-long left-lateral fault in this region. The aim of this study is to examine the existence of the Kibyra Fault, take a different approach to the active fault studies and emphasise the importance of active faults for socio-economic conditions.  相似文献   
95.
96.
On 19 February 2007, a landslide occurred on the Alaard?ç Slope, located 1.6 km south of the town of Yaka (Gelendost, Turkey.) Subsequently, the displaced materials transformed into a mud flow in E?lence Creek and continued 750 m downstream towards the town of Yaka. The mass poised for motion in the Yaka Landslide source area and its vicinity, which would be triggered to a kinetic state by trigger factors such as heavy or sustained rainfall and/or snowmelt, poise a danger in the form of loss of life and property to Yaka with its population of 3,000. This study was undertaken to construct a susceptibility mapping of the vicinity of the Yaka Landslide’s source area and to relate it to movement of the landslide mass with the goal of prevention or mitigation of loss of life and property. The landslide susceptibility map was formulated by designating the relationship of the effecting factors that cause landslides such as lithology, gradient, slope aspect, elevation, topographical moisture index, and stream power index to the landslide map, as determined by analysis of the terrain, through the implementation of the conditional probability method. It was determined that the surface area of the Goksogut formation, which has attained lithological characteristics of clayey limestone with a broken and separated base and where area landslides occur, possesses an elevation of 1,100–1,300 m, a slope gradient of 15 °–35 ° and a slope aspect between 0 °–67.5 ° and 157 °–247 °. Loss of life and property may be avoided by the construction of structures to check the debris mass in E?lence Creek, the cleaning of the canal which passes through Yaka, the broadening of the canal’s base area, elevating the protective edges along the canal and the establishment of a protective zone at least 10-m wide on each side of the canal to deter against damage from probable landslide occurrence and mud flow.  相似文献   
97.
A catastrophic landslide following a rainy season occurred in the backyard of a school building in Söke, Turkey. The landslide caused property damage and adversely affected the present forest cover. Immediately after the landslide, double-row stabilizing piles were designed and constructed based on the findings of two-dimensional (2D) finite element (FE) analyses to take an urgent precaution. To remedy the problem, pile displacements were monitored using inclinometers, and it was observed that the measured displacements were greater than the values calculated in the design stage. Accordingly, two different three-dimensional (3D) numerical FE models were used in tandem with the inclinometer data to determine the load transfer mechanism. In the first model, numerical analyses were made to predict the pile displacements, and while the model predicted successfully the displacement of the piles constructed in the middle with reasonable accuracy, it failed for the corner piles. In the second model, the soil load transfer between piles was determined considering the sliding mass geometry, the soil arching mechanism and the group interaction between adjacent piles. The results of the second model revealed that the middle piles with large displacements transferred their loads to the corner piles with smaller displacements. The generated soil loads, perpendicular to the sliding direction, restricted pile deformations and piles with less displacement were subjected to greater loads due to the bowl-shaped landslide. A good agreement between the computed pile displacements and inclinometer data indicates that the existing soil pressure theories should be improved considering the position of the pile in the sliding mass, the depth and deformation modulus of stationary soil, the relative movement between the soil and piles and the relative movement of adjacent piles.  相似文献   
98.
In the present study, the end bearing capacity of screw and straight pipe pile under similar pile tip area and ground conditions were investigated. The effect of increasing overburden pressure was also considered in this research. Pile load tests on close-ended screw and straight pipe piles were conducted in the small scale. Dry Toyoura sand was used to develop the model ground. The sand was compacted at relative density of 70, 80 and 92 %. It was observed that in case of straight pipe pile, load settlement curve plunges downward without increase in load around settlement equals to 10 % of pile tip diameter, whereas in case of screw pile, the load settlement curve plunges around settlement equals to 15 % of pile tip diameter. Moreover, the screw piles having helix-to-shaft diameter ratio 2–4.1 showed 2–12 times higher end bearing capacity than straight pipe piles with similar pile shaft diameter. It was also observed from the test results that the end bearing capacity of single-helix screw pile was in average 16.25 % less than straight pipe pile with similar pile tip area and ground conditions irrespective of the effect of increasing overburden pressure.  相似文献   
99.
Knowing how many samples to test to adequately characterize soil and rock units is always challenging. A large number of tests decrease the uncertainty and increase the confidence in the resulting values of design parameters. Unfortunately, this large value also adds to project costs. This paper presents a method to determine the number of samples as a function of the coefficient of variation. If, as in the case of a reliability-based design, the resistance factors are a function of the coefficient of variation of the measurements, then lowering the coefficient of variation (COV) can result in lowering of the resistance factor resulting in a less conservative design. In this study, laboratory samples were isolated by specific unified soil classification system soil type and general site location. A distribution was fitted for each of the geotechnical parameters measured. For each scenario, groups of 2, 3, 4, 5, 10, 15, 20, 30, 50, and 100 random samples were generated by using Monte Carlo simulations from the fitted distributions. For each group, the variability was calculated in terms of the COV. In all cases, the COV decreased as the sample size increased. However, the rate of decrease for the COV was the greatest at a low number of samples; it becomes increasingly smaller at a higher number of samples.  相似文献   
100.
Groundwater is one of the most important natural resources of drinking water on the earth planet. In rural areas of Yemen, groundwater is the main resource for drinking as well as for domestic purposes. According to the World Health Organization, one of the most important elements that has to be found in drinking water is fluorine (fluoride) but within the range of concentration of 0.5 up to 1.5 mg/l. Otherwise, any concentration of fluoride out of that range may cause serious diseases in human’s body such as fluorosis, kidney chronic disease, and/or nephrotoxicity. Taiz City, the third important and largest city in Yemen, has been suffering from dental fluorosis for a few decades. The main resource for drinking water in this city and adjacent areas is Al-Howban Basin (the study area) from where 33 groundwater samples were collected from 33 stations. These samples were preserved and then chemically analyzed according to the American Public Health Association Standards. The results reflected high levels of fluoride concentrations up to 3.6 mg/l in groundwater of many stations. GIS mapping was used to produce a geospatial distribution map of fluoride concentrations using ArcGIS-inverse distance weighted (IDW) tool. As a result, three zones of risks were identified in the study area: mild risk zone which covers the major part of the study area, moderate risk zone, and zone of no risk (optimum level zone). The last two zones occupy small portions of the study area. Consequently, dental and skeletal fluorosis, kidney, and/or nephrotoxic diseases are highly expected to be detected in the study area. Groundwater treatment measurements and health precautions are strongly recommended to be taken by local authorities in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号