Theoretical and Applied Climatology - The present study examines the effects of convective available potential energy (CAPE), temperature and humidity on the spatiotemporal variation of... 相似文献
In the northern Bay of Bengal, the existence of intense temperature inversion during winter is a widely accepted phenomenon. However, occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood. In this study, a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020) and RAMA(2... 相似文献
Indiscriminate cutting of hills in the Sylhet region has become a major environmental issue. The nature and life style of Sylhet intimately related with the hills are thus under the threat of a drastic imbalance in its ecosystem. Due to such hill cutting the mostly affected sectors of this region will be its weather and climate, geomorphology and hydrology, and the indigenous flora and fauna. As a result the frequency of natural calamities like earthquake, flash flooding etc may increase considerably. Deforestation and resulting increased soil erosion, decreased ground water recharge and deteriorated water quality might also be as consequences of such hill cutting. This paper investigates the cause and extent of the problem along with its probable impact and finally suggests actions for conservation of hills for ecological balance of the region. 相似文献
This study addresses the morphometric variables that determine the sediment yield in Wadi Al-Arja through the analysis of the impact of different morphometric characteristics along the course of the valley on its sediment yield, as well as the analysis of spatial and formal dimensions and morphologies of the basin and its relationship to the sediment yield. The study also addresses the size of variation in the volume of sediment yield of the river tributaries that make up the water network of the valley under the differences of its morphometric and hydrological characteristics. The study found several results, most notably: The classification of Wadi Al-Arja basin according to the hypsometric integral value(72.1%) within an uneven topography, which increases the force of the erosive activity and the size of the sediment yield if the basin was exposed to moist climatic periods. The study also showed the presence of convergence in the intra-spaces between the river tributaries in the water network. This increases the volume of water flows when these tributaries meet with each other and thus increasing their erosive ability and sediment yield. The study also showed the presence of marked variation in the sediment yield of the river tributaries depending on the differences in its morphometric characteristics. The results of the step-wise regression analysis confirmed the importance of the morphometric and hydrological variables, and plant coverage in interpreting the variation in the size of the sediment yield of the river tributaries of different stream order in Wadi Al-Arja basin, where these variables interpreted 43% of the total variation, with statistical significance less than 0.05. 相似文献
The impact of Southern Oscillation on thecyclogenesis over the Bay of Bengal duringthe summer monsoon has been investigated.The analysis of correlation coefficients(CCs) between the frequency of monsoondepressions and the Southern OscillationIndex (SOI) reveals that more depressionsform during July and August of El Niñoyears. Due to this, the seasonal frequencyof monsoon depressions remains little higherduring El Niño epochs even though thecorrelations for June and September are notsignificant. The CCs for July and August aresignificant at the 99% level.The El Niño-Southern Oscillation (ENSO)is known to affect Indian MonsoonRainfall (IMR) adversely. The enhancedcyclogenesis over the Bay of Bengal duringJuly and August is an impact of ENSO whichneeds to be examined closely. Increasedcyclogenesis over the Bay of Bengal may bereducing the deficiency in IMR duringEl Niño years by producing more rainfallover the eastern parts of India duringJuly and August. Thus there is a considerablespatial variation in the impact of ENSOon the monsoon rainfall over India and El Niñoneed not necessarily imply a monsoonfailure everywhere in India.The area of formation of monsoon depressionsshifts eastward during El Niño years.Warmer sea surface temperature (SST) anomaliesprevail over northwest and adjoiningwestcentral Bay of Bengal during premonsoon andmonsoon seasons of El Niño years.May minus March SOI can provide useful predictionsof monsoon depression frequencyduring July and August. 相似文献
Detailed analysis of intensity for ten damaging historical earthquakes in the central arcuate belt between the Himachal and Darjeeling Himalayas was carried out in the backdrop of isoseismal eccentricity, source depth and Indian plate obliquity. Results indicate that the elongated axes of the isoseismals and strike of ruptures for shallow earthquakes are almost parallel with strike of the Himalayan arc, and clearly conformable with the obliquity. An empirical power law relationship between eccentricity and focal depth established under the present study illustrates that the deeper events are more influenced by the bending of the penetrating Indian lithosphere, whereas the shallower events are principally controlled by the obliquity. A positive correlation between eccentricities and obliquity obviously supports this inference. The present study further reveals that the constant decrease in Indian plate obliquity from Himachal to Nepal-Bihar Himalaya is well compatible with the graben structures and horizontal shearing along this arcuate segment. 相似文献
Natural Hazards - The Hindu Kush Himalayan region is extremely susceptible to periodic monsoon floods. Early warning systems with the ability to predict floods in advance can benefit tens of... 相似文献
This paper presents the analyses of twelve prestressed concrete (PSC) instrumented test piles that were driven in different bridge construction projects of Louisiana in order to develop analytical models to estimate the increase in pile capacity with time or pile setup. The twelve test piles were driven mainly in cohesive soils. Detailed soil characterizations including laboratory and in situ tests were conducted to determine the different soil properties. The test piles were instrumented with vibrating wire strain gauges, piezometers, pressure cells that were monitored during the whole testing period. Several static load tests (SLTs) and dynamic load tests were conducted on each test pile at different times after end of driving (EOD) to quantify the magnitude and rate of setup. Measurements of load tests confirmed that pile capacity increases almost linearly with the logarithm of time elapsed after EOD. Case pile wave analysis program was performed on the restrikes data and was used along with the load distribution plots from the SLTs to evaluate the increase in skin friction capacity of individual soil layers along the length of the piles. The logarithmic linear setup parameter “A” for unit skin friction was calculated of the 70 individual clayey soil layers and was correlated with different soil properties such as undrained shear strength (Su), plasticity index, vertical coefficient of consolidation (cv), over consolidation ratio and sensitivity (St). Nonlinear multivariable regression analyses were performed, and three different empirical models are proposed to predict the pile setup parameter “A” as a function of soil properties. For verification, the subsurface soil conditions and setup information for additional 18 PSC piles collected from local database were used to compare the measured versus predicted “A” parameters from the proposed models, which showed good agreement.
Selecting suitable distributions for rainfall data is usually subjective and complex since it requires decision-makers to consider results from various measures of goodness-of-fit indices. In this study, the VIKOR method in multi-criteria decision-making analysis is modified to select the most suitable plotting positions to represent extreme storm intensities in order to build the intensity–duration–frequency (IDF) curves of storm events. This is done by considering the rankings provided by all goodness-of-fit indices used to obtain a compromise solution. Nine plotting positions are considered: Weibull (W), Adamowski (A), Gringorten (G), Hazen (H) and Gumbel (EV I) and two known plotting positions for generalized extreme value (GEV) distribution using Pearson’s skewness and another two using L-skewness. The IDF curves obtained are compared to a reference IDF curves which was found using the GEV distribution. The mean and median for three goodness-of-fit indices, the coefficient of variation of root mean square error, CVRMSE, the mean percentage of difference, Δ, and the coefficient of determination, R2, are taken as the criteria for selection process. The results show that six plotting positions, A, H, W, G and the two plotting positions with L-skewness, are equally superior compared to the other three plotting positions. 相似文献