首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   10篇
  国内免费   6篇
测绘学   14篇
大气科学   11篇
地球物理   62篇
地质学   125篇
海洋学   8篇
天文学   52篇
综合类   4篇
自然地理   11篇
  2024年   2篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   25篇
  2017年   24篇
  2016年   24篇
  2015年   9篇
  2014年   9篇
  2013年   24篇
  2012年   9篇
  2011年   9篇
  2010年   11篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
21.
22.
Determination of the peak thermal condition is vital in order to understand tectono-thermal evolution of the Himalayan belt. The Lesser Himalayan Sequence (LHS) in the Western Arunachal Pradesh, being rich in carbonaceous material (CM), facilitates the determination of peak metamorphic temperature based on Raman spectroscopy of carbonaceous material (RSCM). In this study, we have used RSCM method of Beyssac et al. (J Metamorph Geol 20:859–871, 2002a) and Rahl et al. (Earth Planet Sci Lett 240:339–354, 2005) to estimate the thermal history of LHS and Siwalik foreland from the western Arunachal Pradesh. The study indicates that the temperature of 700–800 °C in the Greater Himalayan Sequence (GHS) decreases to 650–700 °C in the main central thrust zone (MCTZ) and decreases further to <200 °C in the Mio-Pliocene sequence of Siwaliks. The work demonstrates greater reliability of Rahl et al.’s (Earth Planet Sci Lett 240:339–354, 2005) RSCM method for temperatures >600 and <340 °C. We show that the higher and lower zones of Bomdila Gneiss (BG) experienced temperature of ~600 °C and exhumed at different stages along the Bomdila Thrust (BT) and Upper Main Boundary Thrust (U.MBT). Pyrolysis analysis of the CM together with the Fission Track ages from upper Siwaliks corroborates the RSCM thermometry estimate of ~240 °C. The results indicate that the Permian sequence north of Lower MBT was deposited at greater depths (>12 km) than the upper Siwalik sediments to its south at depths <8 km before they were exhumed. The 40Ar/39Ar ages suggest that the upper zones of Se La evolved ~13–15 Ma. The middle zone exhumed at ~11 Ma and lower zone close to ~8 Ma indicating erosional unroofing of the MCT sheet. The footwall of MCTZ cooled between 6 and 8 Ma. Analyses of PT path imply that LHS between MCT and U.MBT zone falls within the kyanite stability field with near isobaric condition. At higher structural level, the temperatures increase gradually with PT conditions in the sillimanite stability field. The near isothermal (700–800 °C) condition in the GHS, isobaric condition in the MCTZ together with Tt path evidence of GHS that experienced relatively longer duration of near peak temperatures and rapid cooling towards MCTZ, compares the evolution of GHS and inverted metamorphic gradient closely to channel flow predictions.  相似文献   
23.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   
24.
Mildly deformed granitoids exposed around Bilgi in the northernmost part of the eastern Dharwar craton are divided into two groups viz. granodiorites and monzogranites. The granodiorites contain microgranular enclaves and amphibolite xenoliths, and show low-Al TTG affinity with high SiO2 (71–74 %), Na2O, Y and Sr/Y, moderate to moderately high Mg#, Cr and Ni, low to moderate LILE, and low Nb and Ta. However, compared to similar TTGs from different cratons the Bilgi granodiorites have distinctly higher K2O, K2O/Na2O, Rb and lower REE and Th. The amphibolite xenoliths are characterized by variable enrichment of K2O, Rb, Ba and Th and depletion of Ti, Zr and P compared to MORB. The microgranular enclaves are quartz diorite to granodiorite in composition with high Mg, Ni and Cr, and compared to MORB, are enriched in LILE and depleted in Ti and Y. The monzogranites, compared to the granodiorites, display higher SiO2, K2O and Rb with lower Mg#, although still maintaining the high Na2O, Ni and Cr and low REE character. The Bilgi granodiorites are explained as transitional TTGs late synkinematic with respect to regional deformation. Geochemical signatures and regional geological set up suggest that they are probably derived from partial melting of a highly depleted slab material (metabasalt) followed by variable contamination or assimilation of intermediate crustal rocks in a subduction zone set up. Late stage fluid activity on the granodioritic magma is probably responsible for the generation of monzogranites. The amphibolite xenoliths predate the granodiorites and possibly represent fragments of a schist belt carried away by the granitic magma. They are probably island arc basalt derived from mantle source that has been metasomatized by slab-derived fluids. The microgranular enclaves are coeval with the Bilgi granodiorites and also likely to be island arc magmas derived from mantle variably enriched in slab-derived and within-plate components.  相似文献   
25.

Debris flow has caused severe human casualties and economic losses in landslide-prone areas around the globe. A comprehensive understanding of the morphology and deposition mechanisms of debris flows is crucial to delineate the extent of a debris flow hazard. However, due to inherent complex field topography and varying compositions of the flowing debris, coupled with a lack of fundamental understanding about the factors controlling the geomaterial flow, interparticle interactions and its final settlement resulted in a limited understanding of the flow behaviour of the landslide debris. In this study, a physical model was set up in the laboratory to simulate and calibrate the debris flow using PFC, a distinct element modelling-based software. After calibration, a case study of the Varunavat landslide was taken to validate the developed numerical model. Following validation with an acceptable level of confidence, several models were generated to evaluate the effect of slope height, slope angle, slope profile, and grain size distribution of the dislodged geomaterial in the rheological properties of debris flow. Both qualitative and quantitative analysis of the landslide debris flow was performed. Finally, the utility of retaining wall and their effect on debris flow is also studied with different retaining wall positions along the slope surface.

  相似文献   
26.
Dragline is highly capital intensive equipment to procure, operate and maintain in any surface mining operation. Given this, every second of operation of this capital intensive equipment is absolutely important. Improvement of even a single second in the total cycle time has a tremendous bearing on the overall performance of this equipment. In this light, the present paper is an endeavour to critically analyze the cycle time of dragline operations in a major surface coal mine in India. Rigorous statistical analysis has been performed on individual cycle time segments, of complete dragline cycle. The segmental cycle times have been found to be statistically significant and appear to be best represented by lognormal, normal and beta distributions. Furthermore, the mean time of the statistical distribution for segmental cycle time of dragline has revealed the dependence of cycle time on cut geometry and depth. Results have been illustrated in the form of figures, graphs and tables.  相似文献   
27.

News and Notes

Training Programme on Major Tectonics and Lithounits in the Indus and Shyok Suture Zones of Ladakh Himalaya — M. Ram Mohan, (NGRI-CSIR, Hyderabad. Email: rammohan@ngri.res.in) and Sita Bora (Kumaun University, Nainital; Email: sitabora@yahoo.com)  相似文献   
28.
In this article, the authors examine Sea surface temperature (SST), Sea surface circulation (SSC) and Vertical velocity (VV) fields from simulation of 25 layers coarse resolution Modular ocean model (MOM version 3.0) with prescribed wind forcing for the region 74.25°S to 65°N, 180°W-180°E. It is found that distribution of SST simulated by the model shows its consistency with the observed climatology. However, simulated SST in the areas of Arabian Sea, Bay of Bengal, Indonesian Throughflow (ITF) region and east of North America near equator exhibit slight warming with respect to observation, which may be due to model deficiency and forcing problems. Circulation features suggest that one of the strongest current viz. Antarctic circumpolar current (ACC) along with other major current systems viz. Gulf stream current, North and South Pacific current, Agulhas current, Labrador current, Canary current, etc are captured well by the model. In the Indian Ocean and other ocean basins, current patterns are well captured by the model simulation. Intense upwelling as well as downwelling areas is marked in the horizontal distribution of VV, which is as expected. VV show quasi-stagnant and convergent regions suggesting that floating materials may be accumulated during January/July in the real ocean and wind driven circulation may act as an important contribution for such transport of floating materials in these regions. An attempt has also been made to understand the fluctuations of the SST in NINO 3.4 region during the period of model simulation using SST anomalies.  相似文献   
29.
Field studies supplemented by petrographic analyses clearly reveal complete preservation of ophiolite suite from Port Blair (11°39′N: 92°45′E) to Chiriyatapu (11°30′24″N: 92°42′30″E) stretch of South Andaman. The ophiolite suite reveals serpentinite at the base which is overlain unconformably by cumulate ultramafic-mafic members with discernible cumulus texture and igneous layering. Basaltic dykes are found to cut across the cumulate ultramafic-mafic members. The succession is capped by well exposed pillow basalts interlayered with arkosic sediments. Olivine from the basal serpentinite unit are highly magnesian (Fo80.1–86.2). All clinopyroxene analyses from cumulate pyroxenite, cumulate gabbro and basaltic dyke are discriminated to be ‘Quad’ and are uniformly restricted to the diopside field. Composition of plagioclase in different lithomembers is systematically varying from calcic to sodic endmembers progressively from cumulate pyroxenite to pillow basalt through cumulate gabbro and basaltic dyke. Plagioclase phenocrysts from basaltic dyke are found to be distinctly zoned (An60.7-An35.3) whereas groundmass plagioclase are relatively sodic (An33-An23.5). Deduced thermobarometric data from different lithomembers clearly correspond to the observed preservation of complete ophiolite suite.  相似文献   
30.
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker’s asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot’s gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号