首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   768篇
  免费   42篇
  国内免费   11篇
测绘学   22篇
大气科学   36篇
地球物理   194篇
地质学   426篇
海洋学   41篇
天文学   48篇
综合类   8篇
自然地理   46篇
  2022年   17篇
  2021年   23篇
  2020年   25篇
  2019年   17篇
  2018年   67篇
  2017年   50篇
  2016年   70篇
  2015年   21篇
  2014年   60篇
  2013年   73篇
  2012年   36篇
  2011年   34篇
  2010年   27篇
  2009年   27篇
  2008年   18篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   12篇
  2003年   16篇
  2002年   13篇
  2001年   13篇
  2000年   12篇
  1999年   11篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1968年   3篇
排序方式: 共有821条查询结果,搜索用时 328 毫秒
141.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
142.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   
143.
Abstract

Mathematical models developed for quantification of sediment transport in hydrological watersheds require data collected through field or laboratory experiments, but these are still very rare in the literature. This study aims to collect such data at the laboratory scale. To this end, a rainfall simulator equipped with nozzles to spray rainfall was constructed, together with an erosion flume that can be given longitudinal and lateral slopes. Eighty experiments were performed, considering microtopographical features by pre-forming a rill on the soil surface before the start of each experiment. Medium and fine sands were used as soil, and four rainfall intensities (45, 65, 85 and 105 mm h-1) were applied in the experiments. Rainfall characteristics such as uniformity, granulometry, drop velocity and kinetic energy were evaluated; flow and sediment discharge data were collected and analysed. The analysis shows that the sediment transport rate is directly proportional to rainfall intensity and slope. In contrast, the volumetric sediment concentration stays constant and does not change with rainfall intensity unless the slope changes. These conclusions are restricted to the conditions of experiments performed under rainfall intensities between and 105 mm h-1 for medium and fine sands in a 136-cm-wide, 650-cm-long and 17-cm-deep erosion flume with longitudinal and lateral slopes varying between 5 and 20%.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation Aksoy, H., Unal, N.E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci, S.B., Eris, E., and Pak, G., 2013. Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58 (7), 1505–1518.  相似文献   
144.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   
145.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   
146.
Theoretical and Applied Climatology - Improving the economic productivity of limited available freshwater through producing more rice with less water is essential to sustain paddy production...  相似文献   
147.
Shabana Khan 《Natural Hazards》2012,64(2):1587-1607
An understanding of vulnerability is not only crucial for the survival of the exposed communities to extreme events, but also for their adaptation to climate change. Vulnerability affects community participation in hazard mitigation, influences emergency response and governs adaptive capacity for the changing environmental and hazards characteristics. However, despite increased awareness, assessments and understanding of the processes that produce vulnerability, disaster risks prevail. This raises questions on the effectiveness of vulnerability assessments and their applications for hazard mitigation and adaptation. The literature includes a range of vulnerability assessment methods, wherein frequently the selection of any particular method is governed by the research objectives. On the other hand, hazard mitigation plans and policies even though mention vulnerability, their implementation pays less attention to the variations in its nature and underlying causes. This paper explores possible reasons for such gaps by exploring a case study of the Hutt Valley, New Zealand. It brings out the limitations of different vulnerability assessment methods in representing the local vulnerability and challenges they bring in planning for the vulnerability reduction. It argues that vulnerability assessment based on any particular method, such as deprivation index, principle component analysis, composite vulnerability index with or without weight, may not reveal the actual vulnerability of a place, and therefore, a comprehensive vulnerability assessment is needed.  相似文献   
148.
Scheelite and Powellite occur as dissemination and fractures filling in the hornfels and tourmaline-garnet granite in the Palaeoproterozoic rocks of Mahakoshal Group, at about 2.5 km north of Wyndhamganj, Sonbhadra district, Uttar Pradesh. This new find opens new vistas for the search of tungsten mineralization along the contact zones of Mahakoshal Group and the younger granite.  相似文献   
149.
In this study, we systematically analyze the changing properties of reference evapotranspiration (ETref) across China using Penman?CMonteith (P-M) method, exploring the major sensitive meteorological variables for ETref, and investigating influences of human activities, mainly urbanization in this study, on ETref changes in both space and time. We obtain some important conclusions: (1) decreasing annual and seasonal ETref is observed in the east, south and northwest China. However, a long strip lying between these regions is identified to be characterized by increasing ETref; (2) in the regions east to 100°E, the net total solar radiation is the main cause behind the decreasing ETref. In northwest China, however, relative humidity is recognized as the most sensitive variable for the ETref; (3) in the east and south China, urbanization greatly influences the ETref by directly decreasing net solar radiation. The increased air pollution and aerosols in the highly urbanized regions are the main driving factors causing decreasing net radiation; and (4) this study reveals accelerating hydrological cycle from south to north China. Besides, increasing ETref in the source regions of large rivers in China may pose new challenges for the basin-scale water resource management. The results of this study highlight the integrated effects of climate changes and human activities on ETref changes in different regions of China, which will be of great scientific and practical merits in in-depth understanding of hydrological cycle alterations under the changing environment in China.  相似文献   
150.
The activities of 210Po and 210Pb were determined in commonly consumed seafoods to evaluate the internal exposure and risk to humans residing Kudankulam coast where a mega nuclear power plant is under construction. The concentration of 210Po in seafoods ranged from 1.2 ± 0.7 to 248 ± 8.1 Bq kg−1. Meanwhile, 210Pb ranged between 1.1 ± 0.05 and 14.8 ± 1.6 Bq kg−1. The committed effective dose (CED) due to 210Po and 210Pb varied from 11.04 to 515.6 and 3.93 to 23.5 μSv yr−1, respectively. The lifetime cancer risk for the public due to 210Po was in the range of 3.47 × 10−5-1.62 × 10−3 and it was 4.03 × 10−5-1.96 × 10−4 due to 210Pb. The activity intake, effective dose and cancer risk was found lesser than international guidelines and the seafood intake was considered to be safe for human consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号