首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24424篇
  免费   171篇
  国内免费   916篇
测绘学   1410篇
大气科学   1978篇
地球物理   4499篇
地质学   11603篇
海洋学   1003篇
天文学   1635篇
综合类   2161篇
自然地理   1222篇
  2020年   2篇
  2018年   4761篇
  2017年   4037篇
  2016年   2580篇
  2015年   234篇
  2014年   81篇
  2013年   24篇
  2012年   988篇
  2011年   2729篇
  2010年   2015篇
  2009年   2313篇
  2008年   1889篇
  2007年   2361篇
  2006年   53篇
  2005年   196篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   54篇
  1999年   13篇
  1998年   21篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Secondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order approximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.  相似文献   
142.
Building upon our previous work, in which we analyzed smoothed and subsampled velocity data from the Michelson Doppler Imager (MDI), we extend our analysis to unsmoothed, full-resolution MDI data. We also present results from the Helioseismic and Magnetic Imager (HMI), in both full resolution and processed to be a proxy for the low-resolution MDI data. We find that the systematic errors that we saw previously, namely peaks in both the high-latitude rotation rate and the normalized residuals of odd \(a\)-coefficients, are almost entirely absent in the two full-resolution analyses. Furthermore, we find that both systematic errors seem to depend almost entirely on how the input images are apodized, rather than on resolution or smoothing. Using the full-resolution HMI data, we confirm our previous findings regarding the effect of using asymmetric profiles on mode parameters, and also find that they occasionally result in more stable fits. We also confirm our previous findings regarding discrepancies between 360-day and 72-day analyses. We further investigate a six-month period previously seen in \(f\)-mode frequency shifts using the low-resolution datasets, this time accounting for solar-cycle dependence using magnetic-field data. Both HMI and MDI saw prominent six-month signals in the frequency shifts, but we were surprised to discover that the strongest signal at that frequency occurred in the mode coverage for the low-resolution proxy. Finally, a comparison of mode parameters from HMI and MDI shows that the frequencies and \(a\)-coefficients agree closely, encouraging the concatenation of the two datasets.  相似文献   
143.
With respect to the different hydrological responses of catchments, even the adjacent ones, in mountainous regions, there are a great number of motivations for classifying them into homogeneous clusters. These motivations include prediction in ungauged basins (PUB), model parameterization, understanding the potential impact of environmental changes, transferring information from gauged catchments to the ungauged ones. The present study investigated the similarity of catchments through the hydro-climatological pure time-series of a 14-year period from 2001 to 2015. Data sets encompass more than 13,000 month-station streamflow, rainfall, and temperature data obtained from 27 catchments in Utah State as one of the eight mountainous states of the USA. The identification, analysis, and interpretation of homogeneous catchments were investigated by applying the four approaches of clustering, K-means, Ward, and SOM (Self-Organized Map) and a newly proposed Wavelet-Entropy-based (WE-SOM) clustering method. By using two clustering evaluation criteria, 3, 5, and 6 clusters were determined as the best numbers of clusters, depending on the method employed, where each cluster represents different hydro-climatological behaviors. Despite the absence of geographic characteristics in input data matrix, the results indicated a regionalization in agreement with topographic characteristics. Considering the dependency of the hydrological behavior of catchments on the physiographic field aspects and characteristics, WE-SOM method demonstrated a more acceptable performance, compared to the other three conventional clustering methods, by providing more clusters. WE-SOM appears to be a promising approach in catchment clustering. It preserves the topological structure of data which can, as a result, be proofed in a greater number of clusters by dividing data into higher numbers of distinct clusters with similar altitudes of catchments in each cluster. The results showed the aptitude of wavelets to quantify the time-based variability of temperature, rainfall and streamflow, in the way contributing to the regionalization of diverse catchments.  相似文献   
144.
The Fenglin and Fengcong landform units are considered to be an important representation for defining the degree of development of Karst landforms. However, these terrain features have been proven difficult to delineate and extract automatically because of their complex morphology. In this paper, a new method for identifying the Fenglin and Fengcong landform units is proposed. This method consists of two steps: (1) terrain openness calculation and (2) toe line extraction. The proposed method is applied and validated in the Karst case area of Guilin by using ASTER GDEM with one arc-second resolution. The openness of both the positive and negative terrain and a threshold were used to extract toe lines for segmenting depressions and pinnacles in Fenglin and Fengcong landforms. A comparison between the extracted Fenglin and Fengcong landform units and their real units from high resolution images was carried out to evaluate the capability of the proposed method. Results show the proposed method can effectively extract the Fenglin and Fengcong landform units, and has an overall accuracy of 93.28%. The proposed method is simple and easy to implement and is expected to play an important role in the automatic extraction of similar landform units in the Karst area.  相似文献   
145.
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV’s system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.  相似文献   
146.
Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.  相似文献   
147.
Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.  相似文献   
148.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   
149.
An assessment of coastal pollution was made on the basis of trace element concentrations (arsenic — As, mercury — Hg) in the Gulf of Mannar. The beachrock samples were collected along the coastal tracts between Rameswaram and Kanyakumari. The samples were dried and digested to determine the As and Hg using atomic absorption spectrophotometer (AAS-air-acetylene and nitrous oxide method). The As and Hg accumulation status of the beachrock was assessed using geo-accumulation index values (I geo). The accumulation of As and Hg in the beachrock ranges from 2.75 to 20.72 μg g−1 and from 0.06 to 0.31 μg g−1, respectively. The As and Hg concentrations in the beachrocks are compared with crustal average values and average of other region sediments. The possible source of the contamination is from atmospheric deposition and anthropogenic activities.  相似文献   
150.
This paper presents an analysis of the slope failure of a Suvarnabhumi drainage canal during construction. The Suvarnabhumi drainage canal project includes a large drainage canal with a road on both sides. The width of the bottom of the drainage canal is 48.0 m, the depth of the drainage canal is 3.0 m, and the length of the drainage canal is 10.5 km. Because the project was constructed on very soft Bangkok clay, deep cement mixing (DCM) columns were employed to increase the stability of the excavated canal. The failure of the drainage canal slope occurred 25 days after the end of excavation. The field monitoring data show that lateral movement of the canal slope continuously increased with time, which caused failure due to the instability of the canal slope. The time-dependent deformation and undrained creep behavior of very soft clay was suspected to be the cause of the canal failure. A laboratory investigation of undrained creep behavior and a finite element analysis (FEA) using the soft soil creep (SSC) model were performed to confirm the causes of the canal failure. The results indicate that very soft clay specimens that are subjected to deviator creep stress levels of 70 and 100 % of the peak strength failed by creep rupture within 60 days and 8 min, respectively. The factor of safety for the canal slope, which was obtained from the FEA, shows significant reduction from the initial value of 1.710 to 1.045 within 24 days after the end of excavation due to the effect of undrained creep. This paper also describes a solution method that is applied to a new section of the canal. Field monitoring and an FEA of the new trial section were performed to prove the effectiveness of the solution method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号