首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5221篇
  免费   542篇
  国内免费   157篇
测绘学   239篇
大气科学   590篇
地球物理   1939篇
地质学   2116篇
海洋学   267篇
天文学   339篇
综合类   187篇
自然地理   243篇
  2023年   3篇
  2022年   6篇
  2021年   22篇
  2020年   6篇
  2019年   11篇
  2018年   437篇
  2017年   374篇
  2016年   250篇
  2015年   150篇
  2014年   112篇
  2013年   115篇
  2012年   652篇
  2011年   425篇
  2010年   114篇
  2009年   130篇
  2008年   117篇
  2007年   110篇
  2006年   124篇
  2005年   832篇
  2004年   871篇
  2003年   651篇
  2002年   174篇
  2001年   69篇
  2000年   44篇
  1999年   14篇
  1998年   5篇
  1997年   17篇
  1996年   11篇
  1991年   9篇
  1990年   9篇
  1989年   5篇
  1987年   4篇
  1980年   3篇
  1976年   3篇
  1975年   5篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1966年   1篇
  1965年   3篇
  1963年   2篇
  1962年   1篇
  1961年   2篇
  1959年   2篇
  1956年   1篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1925年   1篇
排序方式: 共有5920条查询结果,搜索用时 15 毫秒
71.
Multipath remains one of the major challenges in Global Navigation Satellite System (GNSS) positioning because it is considered the dominant source of ranging errors, which can be classified into specular and diffuse types. We present a new method using wavelets to extract the pseudorange multipath in the time domain and breaking it down into the two components. The main idea is an analysis-reconstruction approach based on application of both continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The proposed procedure involves the use of L1 code-minus-carrier (CMC) observable where higher-frequency terms are isolated as residuals. CMC residuals are analyzed by applying the CWT, and we propose the scalogram as a technique for discerning time–frequency variations of the multipath signal. Unlike Fourier transform, the potential of the CWT scalogram for examining the non-stationary and multifrequency nature of the multipath is confirmed as it simultaneously allows fine detection and time localization of the most representative frequencies of the signal. This interpretation of the CWT scalogram is relevant when choosing the levels of reconstruction with DWT, allowing accurate time domain extraction of both the specular and diffuse multipath. The performance and robustness of the method and its boundary applicability are assessed. The experiment was carried out using a receiver of Campania GNSS Network. The results are given in which specular multipath error is achieved using DWT level 7 approximation component and diffuse multipath error is achieved using DWT level 6 denoised detail component.  相似文献   
72.
Sediment samples from the coastal zone of the Gulf of Suez contain a variety of organic compounds from anthropogenic and natural sources. A total of 12 surface samples of bottom sediments were collected with an Ekman grab sampler along an off-shore transect south of Ras Abu el-Darag. The samples were extracted with a mixture of dichloromethane and methanol (3:1 v/v) after drying and sieving through 250 μm mesh. The extracts were derivatized and analyzed by gas chromatography–mass spectrometry in order to characterize the chemical composition and sources of the organic components. Marine with minor terrestrial biota were the major natural sources of organic tracers and included n-alkanoic acids, sterols and saccharides (5.7–76.7%). Anthropogenic sources, from petroleum related activities, detergent usage for spill cleaning and littering, are indicated by the presence of n-alkanes with carbon preference index ≤1.0, hopanes, steranes, unresolved complex mixture of branched and cyclic hydrocarbons, alkyl nitriles, alkamides and plasticizers. Their total relative concentrations ranged from 23.3 to 97.3% of the total extracts. Petroleum residues from natural seepage may also be part of these hydrocarbons. The levels of anthropogenic inputs decrease from about 94% in coastal zone sediments to about 20% in sediments from the reef front.  相似文献   
73.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}; stishovite ε = 485,000 ± 109,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   
74.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   
75.
In this article, an approach for the efficient numerical solution of multi-species reactive transport problems in porous media is described. The objective of this approach is to reformulate the given system of partial and ordinary differential equations (PDEs, ODEs) and algebraic equations (AEs), describing local equilibrium, in such a way that the couplings and nonlinearities are concentrated in a rather small number of equations, leading to the decoupling of some linear partial differential equations from the nonlinear system. Thus, the system is handled in the spirit of a global implicit approach (one step method) avoiding operator splitting techniques, solved by Newton’s method as the basic algorithmic ingredient. The reduction of the problem size helps to limit the large computational costs of numerical simulations of such problems. If the model contains equilibrium precipitation-dissolution reactions of minerals, then these are considered as complementarity conditions and rewritten as semismooth equations, and the whole nonlinear system is solved by the semismooth Newton method.  相似文献   
76.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   
77.
Hydraulic conductivity sometimes exhibits complicated spatial variation over a site. A thorough understanding of the spatial distributions of hydraulic conductivity helps to make deterministic models of groundwater more accurate. This study presents a novel procedure that combines simulated annealing algorithms (SA) and the shortest distance method (SD) with the modular three-dimensional groundwater flow model (MODFLOW). The procedure is applied to a hypothetical site with groundwater-monitoring wells to minimize the difference between simulated and observed hydraulic head for optimal zoning of the spatial distribution of hydraulic conductivity. The results of this optimal zoning method indicate that this new procedure not only improves the efficiency of optimization, but also increases the probability of finding the global optimum, minimizing the errors of the hydraulic head simulated by MODFLOW in two scenarios, one with known and the other with unknown hydraulic conductivity. The results also illustrated that the procedure can effectively determine and delineate hydrogeological zones.  相似文献   
78.
For petrological calculations, including geothermobarometry and the calculation of phase diagrams (for example, PT petrogenetic grids and pseudosections), it is necessary to be able to express the activity–composition (ax) relations of minerals, melt and fluid in multicomponent systems. Although the symmetric formalism—a macroscopic regular model approach to ax relations—is an easy-to-formulate, general way of doing this, the energetic relationships are a symmetric function of composition. We allow asymmetric energetics to be accommodated via a simple extension to the symmetric formalism which turns it into a macroscopic van Laar formulation. We term this the asymmetric formalism (ASF). In the symmetric formalism, the ax relations are specified by an interaction energy for each of the constituent binaries amongst the independent set of end members used to represent the phase. In the asymmetric formalism, there is additionally a "size parameter" for each of the end members in the independent set, with size parameter differences between end members accounting for asymmetry. In the case of fluid mixtures, for example, H2O–CO2, the volumes of the end members as a function of pressure and temperature serve as the size parameters, providing an excellent fit to the ax relations. In the case of minerals and silicate liquid, the size parameters are empirical parameters to be determined along with the interaction energies as part of the calibration of the ax relations. In this way, we determine the ax relations for feldspars in the systems KAlSi3O8–NaAlSi3O8 and KAlSi3O8–NaAlSi3O8–CaAl2Si2O8, for carbonates in the system CaCO3–MgCO3, for melt in the melting relationships involving forsterite, protoenstatite and cristobalite in the system Mg2SiO4–SiO2, as well as for fluids in the system H2O–CO2. In each case the ax relations allow the corresponding, experimentally determined phase diagrams to be reproduced faithfully. The asymmetric formalism provides a powerful and flexible way of handling ax relations of complex phases in multicomponent systems for petrological calculations.  相似文献   
79.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号