首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1880篇
  免费   126篇
  国内免费   90篇
测绘学   101篇
大气科学   108篇
地球物理   494篇
地质学   973篇
海洋学   89篇
天文学   151篇
综合类   33篇
自然地理   147篇
  2024年   6篇
  2023年   15篇
  2022年   63篇
  2021年   77篇
  2020年   78篇
  2019年   88篇
  2018年   163篇
  2017年   141篇
  2016年   189篇
  2015年   92篇
  2014年   195篇
  2013年   191篇
  2012年   102篇
  2011年   113篇
  2010年   70篇
  2009年   83篇
  2008年   64篇
  2007年   42篇
  2006年   59篇
  2005年   33篇
  2004年   25篇
  2003年   27篇
  2002年   27篇
  2001年   22篇
  2000年   17篇
  1999年   9篇
  1998年   14篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2096条查询结果,搜索用时 15 毫秒
731.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   
732.
Although Arabia hosts one of the largest deserts in the world, studies regarding aeolian erosional features in general and yardangs in particular are rare. The principal aim of this study is to delineate and investigate the various forms of yardangs in the Um Al-Rimam depressions in the northern part of Kuwait. The study area consists of two main depressions connected by neck area made up of continental sediments. Both depressions are surrounded by a dissected escarpment and their floors host muddy playas. On lithological bases, three main types of yardang have been identified: 7 yardangs are sculptured in sandstones of Lower Fars Formation (Lower to Middle Miocene), 23 are carved in calcretic rocks of Ghar Formation (Oligocene to Lower Miocene), and 11 yardangs are developed in Quaternary sediments. Their mean orientation NW (297°) coincides with the prevailing direction of the strong local northwesterly wind called the shamal. The average length/width ratio is 1.5:1. The wide geographic distribution of yardangs around the margins of the northern depression is due to sand blasting. This is explained by the annual sand accumulation measured in the study area where the northern depression shows 143 times higher accumulation than the southern depression, the neck area and the platform above the depressions. Also, the field measurements for annual erosional rates show that the sides of the yardangs are more affected by erosion compared to their middle parts. Remarkably slight mineralogical variations were detected within the surface sediments of Um Al-Rimam depressions and the Quaternary muddy yardangs which indicate a common origin. The age of yardangs is unknown but annual erosional rates on a small Quaternary muddy yardang suggest that they range in age between 44 and 1500 years depending on yardang size. It is believed, as indicated from field observation and interpretation of aerial photos, that the majority of yardangs are pre-existing bedrock forms. These forms were developed by paleo-surface hydrological processes which were modified by wind action in latter phase.  相似文献   
733.
In this research, a parametric study is carried out on the effect of soil–structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub‐structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub‐structure is considered as a homogeneous half‐space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil–structure system is then analyzed subjected to a suit of 24 selected accelerograms recorded on alluvium deposits. An extensive parametric study is performed for a wide range of the introduced non‐dimensional key parameters, which control the problem. It is concluded that foundation embedment may increase the structural demands for slender buildings especially for the case of relatively soft soils. However, the increase in ductility demands may not be significant for shallow foundations with embedment depth to radius of foundation ratios up to one. Comparing the results with and without inclusion of KI reveals that the rocking input motion due to KI plays the main role in this phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
734.
Journal of Geographical Systems - Despite all distortions and incompleteness present in Sketch maps, they can be used for different purposes such as collecting and searching spatial data and...  相似文献   
735.
Regularization methods are used to recover a unique and stable solution in ill-posed geophysical inverse problems. Due to the connection of homogeneous operators that arise in many geophysical inverse problems to the Fourier basis, for these operators classical regularization methods possess some limitations that one may try to circumvent by wavelet techniques.
In this paper, we introduce a two-step wavelet-based regularization method that combines classical regularization methods with wavelet transform to solve ill-posed linear inverse problems in geophysics. The power of the two-step wavelet-based regularization for linear inversion is twofold. First, regularization parameter choice is straightforward; it is obtained from a priori estimate of data variance. Second, in two-step wavelet-based regularization the basis can simultaneously diagonalize both the operator and the prior information about the model to be recovered. The latter is performed by wavelet-vaguelette decomposition using orthogonal symmetric fractional B-spline wavelets.
In the two-step wavelet-based regularization method, at the first step where fully classical tools are used, data is inverted for the Moore-Penrose solution of the problem, which is subsequently used as a preliminary input model for the second step. Also in this step, a model-independent estimate of data variance is made using nonparametric estimation and L-curve analysis. At the second step, wavelet-based regularization is used to partially recover the smoothness properties of the exact model from the oscillatory preliminary model.
We illustrated the efficiency of the method by applying on a synthetic vertical seismic profiling data. The results indicate that a simple non-linear operation of weighting and thresholding of wavelet coefficients can consistently outperform classical linear inverse methods.  相似文献   
736.
Analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented in two papers. Although the subject matter of the papers is a specific system, they are also intended as an illustration of practical application of diverse engineering tools in systematic development of an anti‐seismic product. The Multi‐directional Torsional Hysteretic Damper (MTHD) is a recently patented invention in which a symmetrical arrangement of identical cylindrical steel energy dissipaters is configured to yield in torsion while the structure experiences planar movements due to earthquake shakings. The device has gone through many stages of design refinement, prototype verification tests and development of design guidelines and computer codes to facilitate its implementation in practice. The first of this two‐part paper summarizes the development stages of the new system, conceptual and analytical. The experimental phase of the research is the focus of the accompanying paper. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable‐via‐design or adaptive post‐elastic stiffness. This feature gives the isolated structure the capability to evade the dominant period of the ground motion leading to reduced displacements while having force levels comparable to regular bilinear isolation systems. The device has already been applied to four major bridges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
737.
This paper reports on experimental studies carried out on a 200 kN, 120 mm‐capacity prototype of the newly developed multidirectional torsional hysteretic damper for seismic protection of structures. The main goal of the experiments is to test the validity of the theory developed in a companion paper and to evaluate the low‐cycle fatigue performance of the energy dissipaters of the damper. Because the design and configuration of the damper allow easy replacement of the energy dissipaters, four sets of energy dissipaters were produced out of S355J2 + N, C45 (two sets), and 42CrMo4 + QT steel grades. Force–displacement response of the multidirectional torsional hysteretic damper is studied through fully reversed cyclic quasi‐static displacement‐controlled tests that were carried out in compliance with EN 15129. Following the verification tests, with the aim of studying fatigue and fracture behavior of the cylindrical energy dissipaters of the device, certain numbers of them were subjected to further cyclic tests up to failure, and observations on their fatigue/fracture behavior are reported. The experimental verification test results proved the validity of the developed theory and component design assumptions presented in a companion paper. Furthermore, the energy dissipaters exhibited excellent torsional low‐cycle fatigue performance with number of cycles to failure reaching 118 at a maximum shear strain of 8% for S355J2 + N steel grade. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
738.
Abstract

Remote sensing has become promising in providing temporal and spatial information on biogeodynamics in large and open freshwater bodies. In optically complex environments, such as in the Western Basin of Lake Erie (WBLE), the water contains multiple biogeochemical constituents or colour producing agents (CPAs), such as phytoplankton, suspended matter and dissolved organic carbon; identifying and analysing such in-water constituents is crucial for understanding and assessing many biogeochemical processes. For example, concentrations of chlorophyll-a and total suspended matter can be used as proxies to assess phytoplankton dynamics and particulate loading. However, quantitative estimation of their concentrations from satellite observations is complicated when working with mixed spectral signatures. Hyperspectral remote sensing is fast emerging as a key technology for advanced and improved understanding of optically complex waters. This study estimates concentrations of chlorophyll-a and total suspended matter (TSM) in the WBLE by applying the partial least squares (PLS) method to a full range (400–900 nm) of continuous narrow spectral bands. The PLS method models the covariance between hyperspectral bands and CPAs, and identifies the optimal bands that characterize most of the variance in the CPAs. This method avoids the curse of dimensionality and the effects of multi-collinearity, a challenge that is associated with new-generation hyperspectral satellite sensors. Validation parameters for the PLS-based models produced R2 of 0.84 for chlorophyll-a (RMSE = 1.18 μg/L), and R2 of 0.90 for TSM (RMSE = 1.26 mg/L), illustrating the potential of the PLS method for isolating and extracting absorption features characterizing the various CPAs in optically complex Case II type waters.
Editor Z.W. Kundzewicz Associate editor Not assigned  相似文献   
739.
New types of fiber‐reinforced rubber‐based seismic isolators have been a research interest for a number of engineers in the past decade. These new types of isolators can have similar seismic performances compared with the conventional ones. In most of the previous researches, the fiber‐reinforced rubber‐based isolators is usually manufactured with placing fiber sheets between precut rubber layers with the use of a bonding agent. This research differs from the previous researches in terms of manufacturing process, use of fiber mesh instead of fiber sheets, and use of lead in the core for some of the bearings. The aim of this research is to provide comparisons in fundamental seismic response properties of the new type of fiber mesh reinforced isolators and conventional isolators. In this scope, four pairs of fiber mesh reinforced elastomeric bearings and four pairs of steel‐reinforced elastomeric bearings are subjected to various levels of compression stresses and cyclic shear strains under constant vertical pressure. The tested types of isolators are fiber mesh reinforced elastomeric bearing, fiber mesh reinforced elastomeric bearing with lead core, steel‐reinforced elastomeric bearings, and steel‐reinforced elastomeric bearings with lead core. In this research, steel‐reinforced bearings are called conventional isolators. The major advantage for fiber mesh reinforced bearings observed during the tests is that these isolators can develop a considerable low horizontal stiffness compared with the conventional isolators. The damping characteristics of the new and conventional types are similar to each other. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
740.
We have relocated 259 inland earthquakes in northern Egypt using the double-difference hypocenter technique. Among this dataset we are able to determine source mechanisms of 200 events using P-wave polarities and amplitude ratios as well. The studied earthquakes have been recorded by the Egyptian National Seismological Network from October 1997 to December 2006 with local magnitude (ML) varies between 1.5 and 5.0. Three earthquake dislocations have been defined namely: Dahshour, southeast Beni-Suef, and Cairo-Suez district. Earthquake activities tend to occur in clusters along the first dislocation (Dahshour) however, relatively scattered along the second (southeast Beni-Suef) and the third (Cairo-Suez district) dislocations. At Dahshour dislocation three distinct clusters have been distinguished. Source mechanism solutions of Dahshour earthquakes displayed normal faulting with a strike-slip component to strike-slip faulting with a minor normal dip-slip component. Most of earthquake focal mechanism orientations are varying from NE-SW to NW-SE. The fault plane solutions of Beni-Suef earthquakes represented normal faulting with a strike-slip component. If the NNW-SSE striking plane has been chosen to be the actual fault plane, some solutions would indicated normal faulting with a sinistral strike-slip motion and other reflect normal faulting with a dextral strike-slip component. The fault plane solutions of Cairo-Suez district earthquakes are compatible with E-W to ENE-WSW striking normal fault with a dextral strike-slip motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号