首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
大气科学   1篇
地球物理   1篇
地质学   8篇
海洋学   6篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2009年   1篇
  2008年   2篇
  2005年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 328 毫秒
11.
12.
13.
The quantification and prediction of damage due to different seismic actions to structure types of different strength is an important problem not yet solved in the Earthquake Engineering field. In addition, owing to the fact that macroseismic information cannot be used directly in dynamic calculations, a new problem appears when these are the only kind of data available. Thus, there is a need to estimate a parameter to relate the energy of the ground motion and the damage occurrence, and eventually achieve a better seismic risk assessment. After the study and review of some representative potential damage parameters, attention has been paid to the Arias intensity (unfiltered and filtered in certain frequency ranges) and the Cumulative Absolute velocity (CAV) as the parameters to evaluate the energy of movement, and to relate them with the observed damage. The data used to infer these correlations have been provided by the ENEA-ENEL (Italy). The information consists of strong motion records from the Campano Lucano (1980), Umbria (1984) and Lazio-Abruzzo (1984) earthquakes, and data of damage to buildings in the vicinity of recording instruments (within a maximum radius of 300 m, where the soil conditions remain constant). In this paper, some relations have been obtained to quantify the damage level for different seismic inputs. The results suggest that unfiltered Arias intensity and CAV (for calculation threshold 20 cm/s2) correlate well with the macroseismic information used. Best fits are obtained between the quoted parameters and the observed damage in type A structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   
14.
15.
Suspended sediment (SS) is an important pollutant in freshwater ecosystems and can be detrimental to fish communities. Although macrophytes mediate sediment deposition, little effort has been put into determining how their removal affects sediment resuspension. The present study examined the immediate and long-term impacts of mechanical macrophyte removal on SS concentrations in streams. The results of this study suggest that bed disturbance during mechanical excavation of macrophytes significantly increases SS in the short term, and concentrations were found to increase by as much as 15,687 mg L–1 immediately after macrophyte removal. Significant long-term (77 day) increases in SS were also observed, indicating that without macrophytes, disturbed material is continually resuspended after excavation by fluvial processes. These results demonstrate that macrophyte removal can result in SS levels that have previously been shown to harm fish, and indicate that this activity may be more detrimental to fish than previously thought.  相似文献   
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号