首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   6篇
大气科学   2篇
地球物理   2篇
地质学   27篇
海洋学   1篇
天文学   2篇
自然地理   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
During the mid-Cretaceous, extensive magmatism occurred in theIndian Ocean to form volcanic portions of the southern and centralKerguelen Plateau, Elan Bank and Broken Ridge. Basalt was eruptedalso along the rifted margin of eastern India (Rajmahal). Weinvestigated the ages of these Indian basalts using 40Ar/39Arincremental-heating experiments on whole rocks. Our resultsare consistent with the hypothesis that the lava pile of  相似文献   
22.
The North Atlantic igneous province offers an unrivalled opportunityto study mantle sources contributing to flood basalt magmatism,and melting dynamics associated with active and passive upwellingof hot mantle beneath the lithosphere. In this study, Palaeogenebasalts sampled at localities across the British Isles (fromthe Hebrides in the north to Lundy Island in the south) areshown to have concentrations of Nb, Zr and Y consistent withderivation from two mantle sources: ‘Icelandic’(plume) mantle and hot N-MORB-like mantle forming an outer envelopeto the plume. These sources were sampled over the period 61–58Ma (chrons 26R–26N). Values of  相似文献   
23.
Andesite and dacite from Barren and Narcondam volcanic islands of Andaman subduction zone are composed of plagioclase, orthopyroxene, clinopyroxene, olivine, titanomagnetite, magnesio-hornblende and rare quartz grains. In this study, we use the results of mineral chemical analyses of the calc-alkaline rock suite of rocks as proxies for magma mixing and mingling processes. Plagioclase, the most dominant mineral, shows zoning which includes oscillatory, patchy, multiple and repetitive zonation and ‘fritted’ or ‘sieve’ textures. Zoning patterns in plagioclase phenocrysts and abrupt fluctuations in An content record different melt conditions in a dynamic magma chamber. ‘Fritted’ zones (An55) are frequently overgrown by thin calcic (An72) plagioclase rims over well-developed dissolution surfaces. These features have probably resulted from mixing of a more silicic magma with the host andesite. Olivine and orthopyroxene with reaction and overgrowth rims (corona) suggest magma mixing processes. We conclude that hybrid magma formed from the mixing of mafic and felsic magma by two-stage processes – initial intrusion of hotter mafic melt (andesitic) followed by cooler acidic melt at later stage.  相似文献   
24.
Mid-Ocean Ridge Basalts (MORB) from the Northern Central Indian Ridge (NCIR) were recovered between latitudes 3° and 11°S and are olivine tholeiite with higher abundances of K and Rb.They are of typical transitional MORB (T-MORB) variety and appear to have been generated from an enriched-mantle peridotite source. The primitive NCIR MORBs having Mg# > 0.68 are the product of partial melting at an estimated pressure of ~ 1 GPa. It is inferred that the magma was subsequently modified at a pressure > 1 GPa by crystal fractionation and spinel was the first mineral to crystallize followed by separation of relatively Fe-rich olivine with subsequent decrease in pressure. During progressive fractionation at lower pressure (between 1-0.5 GPa), the bulk composition of the magma became systematically depleted in MgO, and enriched in ∑FeO, TiO2, P2O5 and Na2O. There was,however, limited gradual depletion in Al2O3 and CaO and concomitant enrichment in K2O. With the progressive fractionation these basalts became gradually enriched in V, Co, Y, Zr and to some extent in Sr, and depleted in Ni and Cr. In addition, the ∑REE of the magma also increased with fractionation,without any change in (La/Yb)n value.  相似文献   
25.
Many basaltic flood provinces are characterized by the existenceof voluminous amounts of silicic magmas, yet the role of thesilicic component in sulphur emissions associated with trapactivity remains poorly known. We have performed experimentsand theoretical calculations to address this issue. The meltsulphur content and fluid/melt partitioning at saturation witheither sulphide or sulphate or both have been experimentallydetermined in three peralkaline rhyolites, which are a majorcomponent of some flood provinces. Experiments were performedat 150 MPa, 800–900°C, fO2 in the range NNO –2 to NNO + 3 and under water-rich conditions. The sulphur contentis strongly dependent on the peralkalinity of the melt, in additionto fO2, and reaches 1000 ppm at NNO + 1 in the most stronglyperalkaline composition at 800°C. At all values of fO2,peralkaline melts can carry 5–20 times more sulphur thantheir metaluminous equivalents. Mildly peralkaline compositionsshow little variation in fluid/melt sulphur partitioning withchanging fO2 (DS 270). In the most peralkaline melt, DS risessharply at fO2 > NNO + 1 to values of >500. The partitioncoefficient increases steadily for Sbulk between 1 and 6 wt% but remains about constant for Sbulk between 0·5 and1 wt %. At bulk sulphur contents lower than 4 wt %, a temperatureincrease from 800 to 900°C decreases DS by 10%. These results,along with (1) thermodynamic calculations on the behaviour ofsulphur during the crystallization of basalt and partial meltingof the crust and (2) recent experimental constraints on sulphursolubility in metaluminous rhyolites, show that basalt fractionationcan produce rhyolitic magmas having much more sulphur than rhyolitesderived from crustal anatexis. In particular, hot and dry metaluminoussilicic magmas produced by melting of dehydrated lower crustare virtually devoid of sulphur. In contrast, peralkaline rhyolitesformed by crystal fractionation of alkali basalt can concentrateup to 90% of the original sulphur content of the parental magmas,especially when the basalt is CO2-rich. On this basis, we estimatethe amounts of sulphur potentially released to the atmosphereby the silicic component of flood eruptive sequences. The peralkalineEthiopian and Deccan rhyolites could have produced 1017 and1018 g of S, respectively, which are comparable amounts to publishedestimates for the basaltic activity of each province. In contrast,despite similar erupted volumes, the metaluminous Paraná–Etendekasilicic eruptives could have injected only 4·6 x 1015g of S in the atmosphere. Peralkaline flood sequences may thushave greater environmental effects than those of metaluminousaffinity, in agreement with evidence available from mass extinctionsand oceanic anoxic events. KEY WORDS: silicic flood eruptions; sulphur; experiment; Ethiopia; Deccan  相似文献   
26.
An extinct hydrothermal barite-silica chimney from the Franklin Seamount of the Woodlark Basin, in the southwestern Pacific Ocean, was investigated for mineral distribution and geochemical composition. Six layers on either side of the orifice of a chimney show significant disparity in color, mineral assemblage and major element composition. Electron microscope(SEM) images reveal that the peripheral wall of the chimney is composed of colloform silica, suggesting that incipient precipitation of silica-saturated hydrothermal fluid initiated the development of the chimney wall. Intermediate layers, between the exterior wall and the inner fluid-orifice, dominate with barite and sulfides. Low Sr-to-Ba ratios(SrO/BaO = 0.015–0.017) indicate restricted fluid-seawater mixing, which causes relatively high-temperature formation of the intermediate layers. Whereas the innermost layer bordering the chimney orifice is characterized by more silica and a higher Sr-to-Ba ratio(SrO/BaO = 0.023), could have formed due to a paragenetic shift from a high-temperature active phase to a cooler waning stage of formation. A paragenetic shift is also probably responsible for the change in mineral formation mechanism that resulted in the textural variation of barite and colloform silica developed during different growth phases of this barite-silica chimney.  相似文献   
27.
An APL Program for a Leslie matrix population projection is developed and applied to analysis of a Canadian polar bear population. Hunting specified with respect to sex ratio within a total quota may be included in the projections. Application to the lower central arctic islands' polar bear population of 1100 animals indicates a growth to 1560 animals during ten years without hunting. Projection with two males taken for each female indicates that 54 animals may be taken from the population each year. However, the same sized hunt, but with a one-to-one sex ratio, caused a significant depression of the population.  相似文献   
28.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   
29.
30.
The area of investigation at and around Mashak Pahar, Bankura district, West Bengal, India comprises a number of rock types namely: granite gneiss, migmatized quartz tourmaline gneiss, quartz pebble conglomerate, ferruginous quartzite, quartz tourmaline veins (as veins) and graphite schists. Interestingly, the study area lies in the region extending South Purulia Shear Zone (~Tamar–Porapahar Shear Zone) which marks the boundary between two contrasting tectonic blocks of eastern India, namely, the Chhotanagpur Gneissic Terrane (CGC) to the north and Singhbhum Group of rocks to the south. The rocks of the study area are poly-phasedly deformed by three phases of folding, namely, F1, F2 and F3. All the tourmalines are classified to be of ‘Alkali Group’. Chemistry of tourmalines from migmatized quartz tourmaline gneiss and those from quartz tourmaline veins are in conformity with their relation to (earthquake induced) shear system evolution in this terrain. In general, the compositional evolution of tourmaline during prograde metamorphism (~400°–730°C) has been supported by both petrographic and chemical evidences. Assessment of mineral–chemical data of constituent tourmaline grains clearly suggests compositional variations across zonal boundaries within tourmaline that was controlled by changing metamorphic milieu in this terrane. Field and petrographic evidences clearly indicate activation of earlier and later shears in this region accompanied by infiltration of boron and formation of zoned tourmaline crystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号