首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   3篇
大气科学   16篇
地球物理   1篇
地质学   4篇
海洋学   3篇
天文学   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1963年   1篇
排序方式: 共有26条查询结果,搜索用时 46 毫秒
21.
The correlation coefficients between the typhoon frequencies for the seven regions in East Asia (i. e. Xisha, Guangzhou, Xiamen, Shanghai, Naha, Kagoshima and Nagoya) and the monthly-mean sea surface temperature (SST) from 2 years before to 1 year after are calculated, indicating that the most significant correlation appears in the period from the summer of 2 years before to the summer of 1 year before. During this period negative correlations are located in the northwestern part of the North Pacific while the positive ones located in the southeastern part. It is found that the positive correlations change into the negative ones in Equatorial East Pacific in the same year (simultaneous correlation). The high-level correlation region in 1 year after is found in the area of Alaska Current. It is also suggested that there are interannual variations of about 1,1.5 and 2 years for the changes of the correlation intensity.  相似文献   
22.
Abstract— The x‐ray powder diffraction patterns of 50–100 μm C‐rich grains from five ureilitic meteorites—Kenna, Allan Hills (ALH) 78019, Yamato (Y)‐82100, Y‐791538, and ALH 77257—were obtained by using a Gandolfi camera. The results reveal that the basal spacing of part of the graphite coexisting with diamond is slightly smaller compared to the normal spacing. Compressed graphite is experimentally known to occur at the initial stage of the direct transformation from graphite to diamond structures at high pressures and temperatures. The presence of the compressed graphite in ureilites, therefore, gives clear evidence that the diamond formed by high‐pressure conversion of graphite. The modes of occurrence of C minerals observed with reflected light through an optical microscope reveal that graphite coexisted with olivine and pyroxene during igneous or metamorphic processes and, furthermore, that part of the graphite was converted to diamond by impact. The relative x‐ray intensity of diamond to graphite increases in the following order: ALH 78019 and Y‐82100 < Y‐791538 < Kenna < ALH 77257. This correlates with the shock level that is estimated mainly on the basis of the shock features of silicates. Therefore, the relative amounts of diamond to graphite suggested by x‐ray intensities may be useful as a measure of the degree of shock.  相似文献   
23.
Atmospheric N2O concentration was observed in the Pacific for the period 1991–2006, using commercial container ships sailing between Japan and North America and between Japan and Australia or New Zealand. The N2O concentration showed a secular increase and interannual variations at all sampling locations, but a seasonal cycle was detectable only at northern high latitudes. The annual mean N2O concentration showed little longitudinal variations (within ± 0.3 ppb) in the northern Pacific, but showed a clear north-south gradient of about 0.8 ppb, with higher values in the Northern Hemisphere. The annual mean N2O was also characterized by especially high values at 30°N due to strong local N2O emissions and by a steep latitudinal decrease from the equator to 20°S due to the suppression of interhemispheric exchange of air by the South Pacific Convergence Zone. The N2O growth rate showed an interannual variation with a period of about 3 yr (high-values in 1999 and 2000), with a delayed eastward and poleward phase propagation in the northern and western Pacific, respectively. The interannual variations of the N2O growth rate and soil water showed a good correlation, suggesting that the N2O emission from soils have an important causative role in the atmospheric N2O variation.  相似文献   
24.
Abstract: Abundant benthic foraminifera have been identified in thin sections of the siliceous black ore in the Ezuri Kuroko deposit, Hokuroku, Japan. By treating samples with conventional hydrofluoric acid digestion techniques, sponge spicules and radiolaria have also been recognized in the residue. Under microscopic observations, 94 individual foraminiferal specimens have been detected. However, as it is difficult to identify species or genera by means of microscope observations alone, only a small number of genera have been identified based on morphology. The foraminiferal assemblage is composed predominantly of agglutinated species (83%) with subordinate calcareous species (17%), and is assigned to the Cyclammina Assemblage based on the preponderance of Cyclammina (57%). The foraminifera are generally well preserved within micro‐crystalline to cryptocrystalline quartz, and exhibit no obvious features related to compaction or secondary deformation. Textural observations suggest that the siliceous component of this rock was not derived from an allochthonous block but instead constitutes autochthonous proto‐Kuroko sediment. The Cyclammina Assemblage in the ore is different from recently described foraminiferal assemblages in the vicinity of present deep‐sea hydrothermal vents, but is identical to those found in black shales of the Onnagawa to Funakawa stages in the Green Tuff region. The proto‐Kuroko sediment is assumed to have been deposited in an oxygen‐deficient environment within a closed, deep‐seated basin. The existence of siliceous microfossils suggests that the silica in the siliceous ore did not originate from silica sinter deposits produced by submarine hydrothermal activities, but from a biogenic siliceous ooze, probably composed of diatoms. Sulfide mineralization in the interstices of some of the microfossils is inferred to relate primarily to bacterial sulfate reduction associated with the decomposition of organic matter. The later sulfide mineralization associated with larger crystals (which contain fluid inclusions with homogenization temperatures of approximately 250C) cuts across the siliceous masses and foraminiferal septa, and may have been formed after consolidation of the siliceous ooze, accompanying the formation of acidic intrusive rocks during the late Onnagawa stage.  相似文献   
25.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   
26.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号