首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38656篇
  免费   737篇
  国内免费   242篇
测绘学   746篇
大气科学   2579篇
地球物理   7620篇
地质学   14035篇
海洋学   3544篇
天文学   8692篇
综合类   86篇
自然地理   2333篇
  2022年   259篇
  2021年   436篇
  2020年   498篇
  2019年   578篇
  2018年   1011篇
  2017年   1013篇
  2016年   1078篇
  2015年   580篇
  2014年   1029篇
  2013年   1851篇
  2012年   1192篇
  2011年   1630篇
  2010年   1440篇
  2009年   1795篇
  2008年   1629篇
  2007年   1689篇
  2006年   1556篇
  2005年   1058篇
  2004年   1074篇
  2003年   1112篇
  2002年   995篇
  2001年   869篇
  2000年   796篇
  1999年   723篇
  1998年   716篇
  1997年   723篇
  1996年   587篇
  1995年   572篇
  1994年   499篇
  1993年   453篇
  1992年   408篇
  1991年   423篇
  1990年   437篇
  1989年   390篇
  1988年   370篇
  1987年   398篇
  1986年   415篇
  1985年   507篇
  1984年   545篇
  1983年   542篇
  1982年   496篇
  1981年   454篇
  1980年   429篇
  1979年   408篇
  1978年   374篇
  1977年   375篇
  1976年   336篇
  1975年   350篇
  1974年   337篇
  1973年   367篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Cordieritites and highly peraluminous granites within the ElPilón granite complex, Sierras Pampeanas, Argentina,were emplaced during a medium-P, high-T metamorphic event duringthe initial decompression of a Cambrian orogen along the southwesternmargin of Gondwana. Very fresh orbicular and massive cordierititebodies with up to 90% cordieritite are genetically associatedwith a cordierite monzogranite pluton and a larger body of porphyriticgranodiorite. The petrogenesis of this association has beenstudied using petrographical, mineralogical, thermobarometric,geochemical, geochronological and isotope methods. The graniticmagmas were formed by anatexis of mid-crustal metamorphic rocksformed earlier in the Pampean orogeny. The cordieritites appearat the top of feeder conduits that connected the source regionlocated at  相似文献   
992.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   
993.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   
994.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
995.
996.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   
997.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   
998.
A novel method for synthesis of aluminium hematites, based upon the homogeneous precipitation of Fe and Al oxinates in various proportions, is presented. The precursor precipitates are heated in air at 700?°C. X-ray diffraction, thermal analyses, BET, FTIR, optical reflection analysis, TEM and Mössbauer spectroscopy at room temperature and 80?K of the resulting products indicate that single-phase hematites are formed with structural Al substitution of up to 10 at%. Interestingly, the particle size (>100?nm) is not substantially reduced by the Al content. Although it remains difficult to obtain a homogeneously distributed Al substitution in the final hematite, this processing line offers a unique opportunity to separate the effects of grain size and Al substitution on the Morin transition temperature (T M) of Al hematite. From the comparison between the present hematites and a series of Al-substituted hematites with lepidocrocite as precursor, it could be shown that the effect on T M, associated with a change of a factor 10 in grain size, is about 1/3 of the effect caused by a change of 10 in the degree of substitution. Finally, it is suggested that proper thermal treatments under different conditions of the same precursors are likely to produce spinel phases.  相似文献   
999.
Ground fissuring is a recurrent problem in many countries where water extraction surpasses the natural recharge of aquifers. Due to differential settlement, the soil layer undergoes deformation and cracks with serious consequences for civil infrastructure. Here, we propose an approximate analysis of the fissuring process that can be used to predict the location of cracks, which increasingly affect some middle- and large-sized cities in the world. For that purpose, the ground loss theory is applied to sediments overlying a sinusoidal-shaped graben. This analysis shows the existence of a tensile zone at the border of the graben with maximal values on its shoulder where tension cracks are more likely to appear. It also shows that soil deformation under differential settlement may evolve into ground faulting if water withdrawal continues. Finally, when a crack has completely developed, the tensile zone shifts towards the center of the graben, creating a new area for potential cracking and faulting.  相似文献   
1000.
Far-from-equilibrium batch dissolution experiments were carried out on the 2000–500, 500–250, 250–53 and 53–2 μm size fractions of the mineral component of the B horizon of a granitic iron humus podzol after removal of organic matter and secondary precipitates. The different size fractions were mineralogically and chemically similar, the main minerals present being quartz, alkali and plagioclase feldspar, biotite and chlorite. Specific surface area increased with decreasing grain size. The measured element release rates decreased in the order 53–2>>>2000–500>500–250>250–53 μm. Surface area normalised element release rates from the 2000–500, 500–250 and 250–53 μm size fractions (0.6–77×10−14 mol/m2/s) were intermediate between literature reported surface area normalised dissolution rates for monomineralic powders of feldspar (0.1–0.01×10−14 mol/m2/s) and sheet silicates (100×10−14 mol/m2/s) dissolving under similar conditions. Element release rates from the 53–2 μm fraction (400–3000×10−14 mol/m2/s) were a factor of 4–30 larger than literature reported values for sheet silicates. The large element release rate of the 53–2 μm fraction means that, despite the small mass fraction of 53–2 μm sized particles present in the soil, dissolution of this fraction is the most important for element release into the soil. A theoretical model predicted similar (within a factor of <2) bulk element release rates for all the mineral powders if observed thicknesses of sheet silicate grains were used as input parameters. Decreasing element release rates with decreasing grain size were only predicted if the thickness of sheet silicates in the powders was held constant. A significantly larger release rate for the 53–2 μm fraction relative to the other size fractions was only predicted if either surface roughness was set several orders of magnitude higher for sheet silicates and several orders of magnitude lower for quartz and feldspars in the 53–2 μm fraction compared to the other size fractions or if the sheet silicate thickness input in the 53–2 μm fraction was set unrealistically low. It is therefore hypothesised that the reason for the unpredicted large release rate from the 52–3 μm size fraction is due to one or more of the following reasons: (1) the greater reactivity of the smaller particles due to surface free energy effects, (2) the lack of proportionality between the BET surface area used to normalise the release rates and the actual reactive surface area of the grains and, (3) the presence of traces quantities of reactive minerals which were undetected in the 53–2 μm fraction but were entirely absent in the coarser fractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号