首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
地球物理   6篇
地质学   15篇
海洋学   9篇
天文学   7篇
自然地理   7篇
  2020年   1篇
  2017年   1篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1987年   1篇
  1983年   2篇
  1977年   1篇
  1959年   1篇
排序方式: 共有44条查询结果,搜索用时 62 毫秒
21.
22.
The Kaipara Harbour in New Zealand is one of the largest estuarine systems in the world, containing significant areas of subtidal seagrass habitat (Zostera muelleri). Light availability at the maximum depth limit for Z. muelleri was measured at 2.10 (0.19 SEM) and 4.91 (0.53 SEM) mol photons m?2 d?1 during the winter and summer monitoring periods, respectively. The primary drivers of benthic light availability were found to be surface light availability, the timing of the low tide and water clarity. Core sampling analysis suggested that biomass of seagrass growing at the maximum depth limit was low, indicative of light limitation. The results of this study suggest that the subtidal distribution of seagrass in the Kaipara Harbour is light-limited and that reductions in water clarity due to changes in land use are likely to result in significant reductions in the extent and productivity of subtidal seagrass habitat.  相似文献   
23.
A full understanding of the properties of substellar objects is one of the major challenges facing astrophysics. Since their discovery in 1995, hundreds of brown dwarfs and extrasolar planets have been discovered. While these discoveries have enabled important comparisons with theory, observational progress has been much more rapid than the theoretical understanding of cool atmospheres. The reliable determination of mass, abundances, gravities and temperatures is not yet possible. The key problem is that substellar objects emit their observable radiation in the infrared region of the spectrum where our knowledge of atomic, molecular and line broadening data is poor. Here we report on the status of our PoSSO (Physics of SubStellar Objects) project. In order to understand brown dwarfs and extrasolar planets increasing more like those in our solar system, we are studying a wide range of processes. Here we give an update on the project and sketch an outline of atoms, molecules and processes requiring study. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
24.
Granite-cored domes are associated with many of the larger gold deposits of the Archaean Eastern Yilgarn Craton of Western Australia. The Scotia-Kanowna Dome is eroded to sufficiently deep levels to provide insights into the role granite-cored domes play in controlling fluid flow and gold deposition. At the centre of the Scotia-Kanowna Dome is a granite batholith, which is surrounded by outward-dipping greenstone belts and associated shear zones. This upper-crustal dome sits above mid-crustal domes, providing a series of stacked geometries favourable to focussed fluid flow. A number of small- to medium-sized gold deposits occur on the limbs and the centre of the dome, and the world-class Kanowna Belle gold mine occurs on the nose of the dome. At least three separate gold mineralising events are defined, each of regional significance, which can be correlated with other well known gold deposits of the Eastern Yilgarn Craton.  相似文献   
25.
The Australasian sea cucumber (Australostichopus mollis) has attracted commercial attention for aquaculture development, partly due to its potential for co-culture with shellfish and finfish species. However, minimal attention has been given to the possibility of co-culturing this species with oysters. In this study we evaluated the growth of juvenile sea cucumbers (36.7 ± 0.9 g, wet weight) caged underneath Pacific oyster farms in northern New Zealand. Co-culture started at the end of the summer, and after 304 days the juveniles had doubled in size (79.8 ± 3.3 g, wet weight), but their subsequent growth appeared to be constrained by overstocking of the cages and summer water temperatures, reaching a carrying capacity of 720 g m?2. Overall, the results of this study indicate that the co-culture of juvenile sea cucumbers with Pacific oysters is feasible, if sea cucumber losses are reduced (between 33% and 52% lost in this study) and careful attention is given to stocking rates and the water temperature regimes of oyster farms in order to maintain adequate growth rates.  相似文献   
26.
Abstract

Zircon U–Pb ages, εHf(t), and δ18O isotopic data together with geochemistry and limited Sm–Nd results from magmatic rocks sampled in deep-basement drill cores from undercover parts of the Thomson Orogen provide strong temporal links with outcropping regions of the orogen and important clues to its evolution and relationship with the Lachlan Orogen. SHRIMP U–Pb zircon ages show that magmatism of Early Ordovician age is widespread across the central, undercover regions of the Thomson Orogen and occurred in a narrow time-window between 480 and 470?Ma. These rocks have evolved εHf(t)zrn (?12.18 to ?6.26) and εNd (?11.3 to ?7.1), and supracrustal δ18Ozrn (7.01–8.50‰), which is in stark contrast to Early Ordovician magmatic rocks in the Lachlan Orogen that are isotopically juvenile. Two samples have late Silurian ages (425–420?Ma), and four have Devonian ages (408–382?Ma). The late Silurian rocks have evolved εHf(t)zrn (?6.42 to ?4.62) and supracrustal δ18Ozrn (9.26–10.29‰) values, while the younger Devonian rocks show a shift toward more juvenile εHf(t)zrn, a trend that is also seen in rocks of this age in the Lachlan Orogen. Interestingly, two early Late Devonian samples have juvenile εHf(t)zrn (0.01–1.92) but supracrustal δ18Ozrn (7.45–8.77‰) indicating rapid recycling of juvenile material. Two distinct Hf–O isotopic mixing trends are observed for magmatic rocks of the Thomson Orogen. One trend appears to have incorporated a more evolved supracrustal component and is defined by samples from the northern two-thirds of the Thomson Orogen, while the other trend is generally less evolved and from samples in the southern third of the Thomson Orogen and matches the isotopic character of rocks from the Lachlan Orogen. The spatial association of the Early Ordovician magmatism with the more evolved metasedimentary signature suggests that at least the northern part of the Thomson Orogen is underlain by older pre-Delamerian metasedimentary rocks.  相似文献   
27.
Medicine Lake Volcano (MLV), located in the southern Cascades ∼ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ∼ 2000 km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ∼ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ∼ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ∼ 200 to ∼ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ∼ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ∼ 600 km3, giving an overall effusion rate of ∼ 1.2 km3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.  相似文献   
28.
A new structural evolution consisting of both extensional and contractional events has been defined for the St Ives Goldfield in the south-central Kalgoorlie Terrane of the eastern Yilgarn Craton in Western Australia. These events shaped the development of the fault architecture, which controlled the location of the regional anticlines, the magmatic centres, and the deposition of the Archaean greenstone successions. The fundamental grain of the St Ives Goldfield is north-northwest-trending. This trend is marked by faults which developed during D1 extension, which was oriented east-northeast–west-southwest. Across these faults we map major stratigraphic changes in the thickness and composition of units, especially of the previously undivided Black Flag Group volcaniclastic rocks. The centre of the St Ives Goldfield is dominated by the Kambalda Anticline. This north-northwest-trending regional fold was likely established early during the D1 extensional history, and was fully established during subsequent east-northeast-oriented D2 contraction. The regional anticline is an important architectural element because (1) magmatism and gold mineralising fluids were focussed into this domed region, and (2) deformation was partitioned across the limbs and crest of this structure. The D3 event involved regional uplift and extension, resulting in the formation of late basins (Merougil Conglomerate locally) and the emplacement of granitoids sourced from a metasomatised mantle wedge (Mafic-type porphyries). The most significant gold event in terms of endowment occurred during D4b sinistral strike-slip shearing and associated thrusting (e.g., Tramways and Republican thrusts). These thrusts were previously interpreted as the first contractional structures to deform the area (‘D1’), but are here reinterpreted as relatively late (D4b). In this D4b event, the north-northwest-trending faults underwent sinistral strike-slip shearing and were linked across the Kambalda Anticline by accommodation structures represented by generally east- to east-northeast-trending thrusts. Reactivation of D1 transfer structures may have influenced the location of these later accommodation structures. Late-stage mineralisation during D5 was the result of dextral strike-slip brittle shearing.  相似文献   
29.
World-class mineral systems, such as those found in the Archaean eastern Yilgarn Craton, are the product of enormous energy and mass-flux systems driven by lithospheric-scale processes. These processes can create big footprints or signatures in the lithosphere, which can be observed at a range of scales and via a variety of methods: including geophysics, isotopes, tectonostratigraphy and geochemistry. We use these datasets to describe both the architecture (structure) of world-class gold systems of the Yilgarn Craton and the signatures of their formation. By applying an understanding of the most critical elements of the process, and their signatures, new areas, especially undercover, may be targeted more predictably than before.  相似文献   
30.
The operation and extent of modern-style plate tectonics in the Archean and Paleoproterozoic are controversial, although subduction and terrane accretion models have been proposed for most Archean cratons in the world, including both the Yilgarn and Pilbara Cratons of Western Australia. The recognition of ancient island arcs can be used to infer convergent plate margin processes, and in this paper we present evidence for the existence of several intraoceanic island arcs now preserved in Australia. Beginning in the Archean, Australia evolved to its present configuration through the accretion and assembly of several continental blocks, by convergent plate margin processes. In Australia, possibly the best example of an Archean island arc (or primitive continental arc) is preserved within the Mesoarchean (ca. 3130–3112 Ma) Whundo Group in the Sholl Terrane of the West Pilbara Superterrane. Two younger, Neoarchean, island arc terranes, and associated accretion, have also been proposed for the Yilgarn Craton: the Saddleback island arc (ca. 2714–2665 Ma) in the southwest Yilgarn Craton and the Kurnalpi island arc (ca. 2719–2672 Ma) in the eastern Yilgarn Craton. In the early Proterozoic, in the Central Zone of the Halls Creek Orogen, northern Western Australia, the Tickalara Metamorphics (ca. 1865–1850 Ma) have been interpreted to represent an island arc. In the southwest Gawler Craton in South Australia, the St Peter Suite (ca. 1631–1608 Ma), of juvenile I-type calcalkaline tonalite to granodiorite, possibly represents an island arc. In the Musgrave Province in central Australia, age and geochemical constraints are poor due to later overprinting tectonic events, but felsic orthogneisses (ca. 1607–1565 Ma) possibly represent juvenile felsic crust which was emplaced though subduction-related processes into an oceanic island arc. The arcs are volumetrically insignificant, but important, in that they separate much larger tracts of, usually older, continental crust, often of different composition and geological history. The arcs were sutured to continental crust during arc–continent collisional events, which eventually resulted in the assembly of much of present-day Australia. The arcs, thus, indicate lost oceanic crust. The recognition of island arcs in the ancient rock record indicates that subduction processes, similar in many ways to modern day processes at convergent plate margins, were operating on Earth by at least 3100 Ma ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号