首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
大气科学   17篇
地球物理   7篇
地质学   27篇
自然地理   5篇
  2016年   1篇
  2015年   1篇
  2013年   4篇
  2012年   1篇
  2010年   5篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   17篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1992年   1篇
  1990年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
41.
The turbidite dominated, Oligo-Miocene Pindos foreland basin of western mainland Greece contains two thick (60–72 m), matrix supported conglomerates. The conglomerates are ungraded and contain three clast types: (1) polymict, rounded, extrabasinal clasts (long axes 3–50 cm); (2) tightly folded, intrabasinal clasts (long axes 1–10 m); and (3) tabular, largely undeformed, intrabasinal blocks (long axes 18–300 m). Clasts are isolated within a slit dominated matrix. These chaotic, matrix supported conglomerates are interpreted as mega-debris flow deposits. During transport, extrabasinal clasts were supported by a combination of matrix cohesion and clast dispersive pressure, folded intrabasinal clasts were supported by a combination of buoyancy (Archimedes principle) and clast dispersive pressure. The large tabular clasts were transported by gravity sliding/gliding within the flow on films at high pore fluid pressure. These different clast support mechanisms were active simultaneously within the Pindos mega-debris flow deposits. As a result, the deposits have no systemic vertical stratigraphy, in contrast to many described large scale mass flow deposits. The mega-debris flow deposits are significantly thicker than most described ancient siliciclastic debris flow deposits and provide an ancient analogue for the thick Recent siliciclastic debris flow deposits on continental margins.  相似文献   
42.
The major element chemistry and fluorine contents of biotitesfrom the Gardar alkaline province of South Greenland providean insight into the F contents of late-stage fluids associatedwith the magmatism. Biotites were taken from composite intrusionsranging from alkali gabbro to syenites, nepheline syenites andalkali granites. In each complex they show a large range ofFe/(Fe+Mg) (from 0•2 to 1) and exhibit strong Fe-F avoidance.There is considerable variation in F for any value of Fe/(Fe+Mg)but for each centre maximum F values plotted against Fe/(Fe+Mg)define a nearly straight line of characteristic slope towardslow or zero F at pure annite. Micas in the SiO2 undersaturatedcentres have higher F contents than those from oversaturatedcentres. Cl is low (0•69 wt%) except in the Kûngnâtintrusion, where it reaches 1•4 wt%. Phase equilibriumand textural considerations suggest that most or all biotitesgrew subsolidus in a pervasive deuteric fluid. 18O values suggestthat these fluids were largely magmatic in character and thatextensive reactions with envelope fluids did not occur. Metasomaticresetting of F in biotites in early intrusive units in the aureoleof later units can be demonstrated. Experimental data of Munoz (Mineralogical Society of America,Reviews in Mineralogy 13, 469–494, 1984) were used tocalculate families of curves showing variation in F with Fe/(Fe+Mg)for biotites in equilibrium with fluids of fixed fugacity ratio,f(HF)/f(H2O), at fixed P and T. The resulting curves cut sharplyacross the maximum fluorine lines observed in the natural examples.As it seems highly unlikely that changes in fluid compositionand T, acting together, could produce the observed linear relationship,we conclude that the partitioning of F between fluid and micain the plutonic environment is not well modelled by the experiments.Possible explanations are short-range order (SRO) of Fe andMg on octahedral sites in biotite (Mason, Canadian Mineralogist30, 343–354, 1992) or effects resulting from differentF speciation in alkaline fluids. If perfect Fe-F avoidance isassumed, Fe-Mg SRO can increase maximum F content. The F levelsseen in the silica-saturated centres are broadly consistentwith a cooling-rate related control. It is possible that thehigher F in biotites in the undersaturated centres reflectsdifferent speciation in the fluid rather than higher F contents,with strongly bound SiF4° complexes more common. KEY WORDS: biotites; Gardar; fluorine; alkaline rocks; fluids  相似文献   
43.
44.
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum.  相似文献   
45.
Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre‐scale lithofacies heterogeneity was captured and modelled using closely‐spaced sections. Ten lithofacies, deposited in a shallow‐water carbonate‐dominated ramp, were recognized and their dimensions and associations were documented. Field data, including height sections, were georeferenced and input into the model. Four models were built in the present study. Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter‐well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. Model A is used as the base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a powerful tool for modelling well‐defined spatial facies relationships. However, in shallow‐water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow‐water carbonate modelling methods.  相似文献   
46.
47.
48.
49.
This paper interprets a stone‐banked lobe on the upper western face of Mt Rufus, at an altitude of 1380 m in western Tasmania, Australia. The morphology of the deposit resembles that of a solifluction lobe. Field observations show vertical and downslope movement of pebbles, cobbles and small boulders over a single winter season. The movement is largely related to frost pull (10–15 cm) and shallow freeze–thaw processes promoting the downslope (up to 50 cm yr–1) creep of material and the accumulation of coarse clasts at the lobe riser. The climate of Mt Rufus is strongly maritime and this is reflected in the limited duration and depth of penetration of frozen ground at this site during the 2013 winter. Despite the relatively mild climatic conditions, freeze–thaw processes are clearly the dominant geomorphic force operating at the site. These findings support observations of active stone‐banked lobes on sub‐Antarctic islands where intense freezing is absent. Both there and at Mt Rufus, movement is dominated by freeze–thaw processes operating in the upper c. 20 cm of the regolith. These are typical landforms of marginal freeze–thaw settings.  相似文献   
50.
Long sediment cores were collected in spring 2006 from Lake Petén Itzá, northern Guatemala, in water depths ranging from 30 to 150 m, as part of an International Continental Scientific Drilling Program project. The sediment records from deep water consist mainly of alternating clay, gypsum and carbonate units and, in at least two drill sites, extend back >200 kyr. Most of the lithostratigraphic units are traceable throughout the basin along seismic reflections that serve as seismic stratigraphic boundaries and suggest that the lithostratigraphy can be used to infer regional palaeoenvironmental changes. A revised seismic stratigraphy was established on the basis of integrated lithological and seismic reflection data from the basin. From ca 200 to ca 85 ka, sediments are dominated by carbonate‐clay silt, often interbedded with sandy turbidites, indicating a sediment regime dominated by detrital sedimentation in a relatively humid climate. At ca 85 ka, an exposure horizon consisting of gravels, coarse sand and terrestrial gastropods marks a lake lowstand or partial basin desiccation, indicating dry climate conditions. From ca 85 to ca 48 ka, transgressive carbonate‐clay sediments, overlain by deep‐water clays, suggest a lake level rise and subsequent stabilization at high stage. From ca 48 ka to present, the lithology is characterized by alternating clay and gypsum units. Gypsum deposition correlates with Heinrich Events (i.e. dry climate), whereas clay units coincide with more humid interstadials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号