首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地球物理   10篇
地质学   20篇
海洋学   1篇
自然地理   2篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1978年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
21.
22.
23.
We analyze the results of investigations of acoustic properties (velocities of longitudinal and transversal waves) in sand samples containing different amounts of water, ice, and methane or tetrahydrofuran hydrates in the pores using a special laboratory setup.  相似文献   
24.
Generalized geothermal data was used to produce two electronic atlases for Asian Russia,Geothermal Atlas of Siberia(GAS)(1995-2000) and Geothermal Atlas for Siberia and Russian Far East(GASRFE)(2009-2012).The atlases include heat flow maps,temperatures at depths of 0.5,1,2,3,5 km and lower boundary of permafrost.Quantitative values of parameters are presented as isolines(GAS) and symbols(GASRFE).GAS website is located at the Trofimuk Institute(www.ipgg.sbras.ru/ru/institute/structure/geophysics/natural-fields).GASRFE provides the most complete geothermal data on Asian Russia,which has been growing for the last 50 years,and is published on the Internet at http://maps.nrcgit.ru/geoterm.In this atlas,data about the depth of permafrost lower boundary( "zero" isotherm) are presented for the first time.  相似文献   
25.
The thermal conductivity of rocks (λ) used previously to estimate heat flow in high-latitude Siberia was assumed to be λ = 1.8–2.0 W/(m?K), according to published evidence, but was almost never measured specially. We measured the thermal conductivity of core samples from boreholes drilled in the northeastern West Siberian Plate and in the Yenisei–Khatanga basin in the 1990s, using two advanced instruments: a comparator and a scanner of thermal conductivity. Altogether there were 305 samples of air-dry sediments (λd) from the 1100–4200 m interval of 23 holes, out of which 77 samples were then moistened (λw). The average thermal conductivities of rocks in dry and wet conditions were found to be λd = 1.9 ± 0.2 and λw = 2.6 ± 0.1 W/(m?K), respectively. Thus, the true thermal conductivity of sediments, which are saturated with water in this northern area, must be about 20–30% higher than that assumed in the previous heat flow determinations, and the latter are thus underestimated correspondingly. The updates to the thermal conductivity values imply major revision to the existing ideas of the thermal regime in the Siberian high latitudes. Such a serious revision of geothermal data will obviously require a large amount of additional experimental work.  相似文献   
26.
We have applied the method of one temperature log suggested by Kutasov in 1987 to process an unsteady temperature log of the 674 m deep submarine borehole BDP-98-2 (Akademichesky Ridge, Lake Baikal) and found it suitable to reconstruct the primary steady thermal gradient not disturbed by drilling. The steady gradient we derived using a special formalism, with reference to drilling conditions and measured thermal properties of sediments, was 63 mK/m, more than two times the unsteady gradient at different depths. Heat flow calculated with this gradient and a mean thermal conductivity of 1.1 W/(m·K) was 70 mW/m2, which is consistent with earlier geothermal data from the same area. Thus, the one-log procedure is a useful tool to predict the original undisturbed thermal gradients and estimate approximate heat flows if a single unsteady temperature log is available.  相似文献   
27.
Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术   总被引:8,自引:0,他引:8  
本文介绍了Re-Os同位素定年的基本原理、技术发展及应用现状;综述了样品分解和Re-Os分离富集的主要方法,重点对ICP-MS法进行Re-Os同位素定年做了较详尽的介绍,包括质量分馏校正、干扰校正、含量初测、取样量的确定、稀释剂的稀释比及稀释剂加入量等,以确保高精度测试;评述了ICP-MS最常见的测定对象-辉钼矿中Re-Os的失耦现象及降低其对Re-Os同位素定年影响的对策,文中描述了由测定同位素比值计算含量时的误差传递公式并重申了最佳稀释比。最后,指出了Re-Os同位素定年方法研究中应该关注的工作方向。  相似文献   
28.
29.
30.
Concentrations of helium isotopes were measured in gas and water samples from 28 thermal mineral springs in Tuva and adjacent regions of Buryatia and Gorny Altai. It is shown that fluids from 16 springs are rich in mantle helium (4–35%). With regard to the air contamination of the samples, the corrected ratios of helium isotopes (Rcor = 3He/4He) in these springs vary from 5.3 × 10–8 to 422 × 10–8. Using these Rcor values, we estimated the heat flow; these estimates were then applied to calculate the deep-level temperatures and thickness of thermal lithosphere. According to these parameters, the Tuva region is divided into two parts. Eastern Tuva (from ~96° E to the boundary with Buryatia) is characterized by abnormal helium isotope ratios and heat flow indicating the intense heating of the Earth’s crust in eastern Tuva: At a depth of 50 km, a temperature reaches 1000–1200 °C, and the thickness of thermal lithosphere is reduced to 70–50 km. This testifies to a rift process west (probably, up to 96° E) of the Baikal Rift Zone. In western Tuva, the average heat flow is much lower, ~45–50 mW/m2, which is commensurate with that in the Altai–Sayan folded area as a whole. The deep-level temperatures here are twice lower, and the lithosphere thickness increases to 150 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号