Three measurements of head at unique locations form a three-point estimator of the local magnitude and orientation of the hydraulic gradient. The relative head measurement error (RHME) is defined here as the measurement error normalized by the head drop across the three-point estimator. Monte Carlo simulation results show that estimators with base to height ratios between 0.5 and 5.0 and that are large enough to keep the RHME below 0.05 create the most accurate gradient estimates and provide criteria for identifying good estimators. These criteria are applied to an example ground water monitoring network design problem in the Culebra dolomite near the Waste Isolation Pilot Plant repository to both analyze temporal changes and modify and expand the current monitoring network. Limiting the three-point estimators to those that meet the shape and RHME criteria reduces the number of possible estimators by >50% and leads to approximately 1 order of magnitude decrease in the average estimated magnitude of the gradient relative to using all estimators. Application of these criteria also reduces the variability in estimated gradient magnitude and orientation between the two time periods of measurements. Redundant wells in the network are identified by removing each existing well in turn and determining which removals yield the smallest decrease in the number of acceptable estimators. Optimal new well locations are identified by mapping the increase in total number of acceptable estimators for a single new well placed in the study domain. 相似文献
In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献
Variation in glycogen concentration, condition index (CI) and filtration activity were measured in the bivalve Macoma balthica buried in sediment and experimentally exposed to cadmium (Cd). The stress due to elevated but sub-lethal concentrations (300 ppb Cd) affected the overall fitness of the organism as all parameters monitored responded significantly. Lower concentrations tested (10, 30 and 100 ppb) only induced a significant decrease in filtration activity, which may play a protective role, enabling the organism to slow down its metabolic activity and preserving the integrity of its reserves (reflected by stable CI and glycogen levels). Hence, the various endpoints selected show different thresholds. Our results also demonstrate that under high exposure, small individuals loose proportionally more glycogen per unit of weight than larger ones, thus confirming the higher sensitivity of small individuals to metal contamination. Furthermore, exposure to intermediate concentration (30 ppb) seems to be beneficial to the small individuals as indicated by their high CI values compared to the control. These results showed thus that non-sigmoidal concentration-response relationship and sizes of individuals should be considered in monitoring programmes and risk assessment. 相似文献