首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85491篇
  免费   1138篇
  国内免费   526篇
测绘学   1757篇
大气科学   5607篇
地球物理   16261篇
地质学   30798篇
海洋学   7874篇
天文学   19906篇
综合类   223篇
自然地理   4729篇
  2022年   619篇
  2021年   1048篇
  2020年   1115篇
  2019年   1247篇
  2018年   2552篇
  2017年   2361篇
  2016年   2718篇
  2015年   1355篇
  2014年   2617篇
  2013年   4492篇
  2012年   2864篇
  2011年   3698篇
  2010年   3373篇
  2009年   4263篇
  2008年   3716篇
  2007年   3831篇
  2006年   3551篇
  2005年   2522篇
  2004年   2446篇
  2003年   2284篇
  2002年   2273篇
  2001年   1970篇
  2000年   1954篇
  1999年   1536篇
  1998年   1596篇
  1997年   1466篇
  1996年   1243篇
  1995年   1242篇
  1994年   1042篇
  1993年   1007篇
  1992年   934篇
  1991年   967篇
  1990年   936篇
  1989年   817篇
  1988年   751篇
  1987年   883篇
  1986年   773篇
  1985年   946篇
  1984年   1070篇
  1983年   1031篇
  1982年   950篇
  1981年   891篇
  1980年   792篇
  1979年   748篇
  1978年   726篇
  1977年   618篇
  1976年   626篇
  1975年   613篇
  1974年   589篇
  1973年   656篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
761.
762.
Archival HST FOS and GHRS data sets have been used to collect ultraviolet evidence for large- and small-scale stellar wind structure in extragalactic Local Group OB stars (i.e. SMC, LMC including R136, M31, M33 and NGC 6822). By comparison with previous studies of Galactic OB stars, wind activity is principally diagnosed in individual spectrograms via the presence of 'narrow absorption components' and saturated 'black' absorption troughs in the resonance line doublets. Their characteristics broadly suggest that these stars share the same physical mechanisms for perturbing the winds as those that act in Galactic stars. Both of these spectral indicators are also used to provide reliable measures of wind terminal velocities. These velocities are directly compared with previously published Galactic values, without reliance on model profile fitting. Relative to Galactic OB stars, the most discrepant terminal velocities (and wind line profiles) result from main-sequence early O-type stars in the SMC.  相似文献   
763.
764.
The Fahrenheit-to-Celsius temperature-conversion equation is a basic component of many introductory earth science courses. Despite its simplicity, it presents a challenge to students and instructors alike because residents of the United States are unfamiliar with the Celsius scale. By solving for the point at which these two temperature scales are equal, it is possible to use the equations for temperature conversion as a springboard to more advanced topics. It is demonstrated that temperature-conversion equations and chaotic equations can be solved using identical numerical and graphical techniques. As a result, the fundamental concepts of chaos theory and numerical methods can be introduced to students in the context of the simplest equations in the earth sciences. These solution methods are applied to the quantitative theory of the extratropical cyclone as an example of the utility and broad scope of this educational approach.  相似文献   
765.
Abstract— A widely held view of nebular evolution is that during the ~0.5 Ma while interstellar material was collapsing onto the disk, the latter grew in mass to the point of gravitational instability. It responded to this by losing axial symmetry, growing spiral arms that had the capacity to tidally redistribute disk mass (inward) and angular momentum (outward) and prevent further increase in the disk/protosun mass ratio. The spiral arms (density waves) rotated differently than the substance of the nebula, and in some parts of the disk, nebular material may have encountered the arms at supersonic velocities. The disk gas, and solid particles entrained in it, would have been heated to some degree when they passed through shock fronts at the leading edges of the spiral arms. The present paper proposes this was the energetic nebular setting or environment that has long been sought, in which the material now in the planets and chondritic meteorites was thermally processed.  相似文献   
766.
767.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   
768.
Atmospheric composition is a key control on climate and the habitability of planetary surfaces. Ablation of infalling micrometeorites has been recognised as one way in which atmospheric chemistry can be changed, especially at times in solar system history when the infall rates of exogenous material were high. Despite its potential to influence climate and habitability, extraterrestrial sulphur dioxide is currently an unquantified contribution to the atmospheres of the terrestrial planets. We have used flash pyrolysis to simulate the atmospheric entry of micrometeorites and Fourier-transform infrared spectroscopy to identify and quantify the sulphur dioxide produced from the carbonaceous meteorites Orgueil (CI1), ALH 88045 (CM1), Cold Bokkeveld (CM2), Murchison (CM2) and Mokoia (CV3). We have used this approach to understand the introduction of sulphur dioxide to the atmospheres of Earth and Mars from infalling micrometeorites. Sulphates, present in carbonaceous chondrites at a few wt.%, are resistant to thermal decomposition, limiting the yields of sulphur dioxide from unmelted micrometeorites. Infalling micrometeorites are a minor source of present-day sulphur dioxide on Earth and Mars, calculated to be up to around 2400 tonnes and about 350 tonnes, respectively. During the Late Heavy Bombardment (LHB), the much greater infall rates of micrometeoritic dust are calculated to be associated with average production rates of sulphur dioxide of around 20 Mt yr−1 for the early Earth and 0.5 Mt yr−1 for early Mars, for a LHB of 100 Myr. These rates of delivery of sulphur dioxide at high altitudes would have reduced the solar energy reaching the surfaces of these planets, via scattering of sunlight by stratospheric sulphate aerosols, and may have had detrimental effects on developing biospheres by promoting cooler climates and reducing the probability of liquid water on planetary surfaces.  相似文献   
769.
Rainfall regimes with strong spatial and temporal variation are characteristic of many coastal regions of north and eastern Australia. In coastal regions of north eastern Australia, regimes vary considerably over short distances. This occurs because of changes in local topography, including the height and orientation of mountain ranges and the direction of the coastline with respect to the prevailing moist south east air stream. Northern Australia experiences a tropical monsoon climate with rainfall occurring predominantly during the summer months. Areas with a closer proximity to the coast typically experience the heavier rainfalls. While networks of rainfall gauges have been established and continuous records are available for most of these stations from the 1890s, their low distribution density relative to the complexity of rainfall pattern they are required to represent means that there remains a poor understanding of the spatial and temporal distribution of rainfall in the wet tropics. An enhanced knowledge of rainfall distribution in both space and time has the potential to deliver significant economic and environmental benefits to managers of natural resources. This paper reports on the application of a technique for estimating mean annual and mean monthly rainfall across the Herbert River catchment of north east Australia's dry and wet tropics. The technique utilises thin plate smoothing splines to incorporate both location and elevation into estimates of rainfall distribution. We demonstrate that the method can be applied successfully at the meso scale and within the domain of routinely available data. As such, the method has broad relevance for decision making.  相似文献   
770.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号