首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112939篇
  免费   1443篇
  国内免费   864篇
测绘学   2648篇
大气科学   7530篇
地球物理   21186篇
地质学   42306篇
海洋学   9846篇
天文学   25389篇
综合类   388篇
自然地理   5953篇
  2022年   723篇
  2021年   1222篇
  2020年   1340篇
  2019年   1459篇
  2018年   4512篇
  2017年   4081篇
  2016年   4045篇
  2015年   1741篇
  2014年   3150篇
  2013年   5402篇
  2012年   3928篇
  2011年   5826篇
  2010年   5165篇
  2009年   6340篇
  2008年   5432篇
  2007年   5835篇
  2006年   4202篇
  2005年   3170篇
  2004年   3057篇
  2003年   2936篇
  2002年   2842篇
  2001年   2349篇
  2000年   2304篇
  1999年   1820篇
  1998年   1893篇
  1997年   1750篇
  1996年   1500篇
  1995年   1486篇
  1994年   1314篇
  1993年   1202篇
  1992年   1144篇
  1991年   1158篇
  1990年   1163篇
  1989年   982篇
  1988年   923篇
  1987年   1095篇
  1986年   929篇
  1985年   1186篇
  1984年   1283篇
  1983年   1231篇
  1982年   1142篇
  1981年   1051篇
  1980年   991篇
  1979年   890篇
  1978年   886篇
  1977年   746篇
  1976年   757篇
  1975年   730篇
  1974年   709篇
  1973年   785篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Goethite contained in lateritic bauxites or in artificial mineral admixtures is completely transformed into peculiar Fe-alkoxide compounds by reaction with glycerol at 245°C. Magnetic spinel oxides result from hydrolysis by boiling water of alkoxides obtained from the artificial admixtures. On the other hand, the production of magnetic spinel materials is not observed in alkoxides derived from natural lateritic samples. This may be caused by the high amount of Al substituting for Fe in these Venezuelan lateritic goethites.  相似文献   
982.
Dispersed and concretionary pyrite in chert–clay–carbonate and carbonate rocks of the Abalak Formation (Salym oil field) have been studied. The study was conducted using Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA), and high spatial resolution Secondary Ion Mass Spectrometry (Nano-SIMS). As a result, three morphological groups of pyrite have been distinguished: large cubic crystals, framboidal pyrite, and fine-crystal aggregates that replace organic remnants. The sulphur isotope ratio allows one to distinguish two genetic types of pyrite. The source of the sulphur for the first genetic group was H2S produced by bacterial sulphate reduction, while the second group pyrite was formed with sulphur as a product of thermochemical sulphate reduction.  相似文献   
983.
An original methodology for the atomistic computer modeling of solid solutions was applied for the study of the mixing properties and local structure of the grossular-uvarovite, i.e., Ca3Al2[SiO4]3 Ca3Cr2][SiO4]3, garnet series. The parameters of the interatomic potentials for end members of this series were optimized using experimental data on their structural, elastic, and thermodynamic characteristics. The optimized model of the potentials allowed us to describe the elastic, structural, and thermodynamic characteristics of grossular and uvarovite and estimate the energy of point defects in these crystal structures. Calculations of the mixing properties and local structure for seven different compositions of the solid solution were carried out on a “Chebyshev” supercomputer (Moscow State University) in a 2 × 2 × 4 supercell of the garnet-type structure containing 2560 atoms. Mixing properties, such as the enthalpy of mixing, parameters of interaction, excess mixing volume, deviation of bulk modulus from additivity, and the vibrational and configuration contribution to the entropy of mixing, were determined. This allowed us to estimate the stability field for the grossular-uvarovite solid solution. Histograms of the interatomic distances M-O (M = Ca, Al, Cr, Si) and O-O in supercells were plotted and the parameters of relaxation and changes of the CrO6 and AlO6 octahedron volumes were estimated. The data of the simulation are quite consistent with the experimental data on this system and supplement it significantly.  相似文献   
984.
The mineralogy and structural features of the main types of ferromanganese deposits—nodules, micronodules, Co-bearing crusts, crustlike nodules, and low-temperature hydrothermal manganese crusts and ferruginous ochers—are considered. The correlation between their mineral composition and structure is shown. The proposed classification of mineral types is based on characteristic assemblages of Fe and Mn minerals.  相似文献   
985.
Northwest Africa (NWA) 4472 is a polymict lunar regolith meteorite. The sample is KREEP-rich (high concentrations of potassium, rare earth elements and phosphorus) and comprises a heterogeneous array of lithic and mineral fragments. These clasts and mineral fragments were sourced from a range of lunar rock types including the lunar High Magnesian Suite, the High Alkali Suite, KREEP basalts, mare basalts and a variety of impact crater environments. The KREEP-rich nature of NWA 4472 indicates that the sample was ejected from regolith on the nearside of the Moon in the Procellarum KREEP Terrane and we have used Lunar Prospector gamma-ray remote sensing data to show that the meteorite is most similar to (and most likely sourced from) regoliths adjacent to the Imbrium impact basin.U-Pb and Pb-Pb age dates of NWA 4472 phosphate phases reveal that the breccia has sampled Pre-Nectarian (4.35 Ga) rocks related to early episodes of KREEP driven magmatism. Some younger phosphate U-Pb and Pb-Pb age dates are likely indicative of impact resetting events at 3.9-4 Ga, consistent with the suggested timing of basin formation on the Moon. Our study also shows that NWA 4472 has sampled impact melts and glass with an alkali-depleted, incompatible trace element-rich (high Sc, low Rb/Th ratios, low K) compositional signature not related to typical Apollo high-K KREEP, or that sampled by KREEPy lunar meteorite Sayh al Uhaymir (SaU) 169. This provides evidence that there are numerous sources of KREEP-rich protoliths on the Moon.  相似文献   
986.
The composition of andesites from the Yamato central submarine rise and adjacent structures (Sea of Japan) points to the presence of a Late Cretaceous shortened and Oligocene-Miocene extended calc-alkaline series. With the general similarity of mineral assemblages of andesites, they are distinct in composition of minerals, which testifies to different formation conditions. The andesites of the extended type are the products of crystallization differentiation, whereas those of the shortened type are characterized by nonequilibrium composition of minerals, which reflects the heterogeneous primary melt, the composition of which discretely varied (probably repeatedly) during crystallization.  相似文献   
987.
The diamondiferous Ellendale 9 (E9) pipe is a funnel-shaped maar-diatreme volcano consisting of inward-dipping tuff sequences intruded by lamproite plugs and dykes. The host rocks for the E9 pipe are Permian sandstones. The multiple lithological contacts exposed within the mined maar volcano provide a natural laboratory in which to study the effect of volcanic processes on U–Th–Pb–He systematics. Zircon from the regional sandstone and E9 lamproite display a bimodal distribution of ages on (U–Th)/He–U/Pb plots. The zircon U/Pb ages for the E9 pipe (n?=?52) range from 440 to 2,725 Ma, while the cluster of (U–Th)/He ages for the lamproite dyke zircon indicate that dyke emplacement occurred at 20.6?±?2.8 Ma, concordant with a maximum emplacement age of about ≤22 Ma from phlogopite 40Ar/39Ar. These ages indicate a xenocrystic origin for the zircon entrained in the E9 dyke. The U/Pb ages of detrital zircon from the regional sandstone host (373–3,248 Ma; n?=?41) are indistinguishable from those of the lamproite zircon xenocrysts, whereas the detrital zircon in the host sandstone yield (U–Th)/He ages from 260 to 1,500 Ma. A thermochronology traverse across the E9 lamproite dyke reveals that the zircon (U–Th)/He ages in the host sandstone have not been significantly thermally reset during dyke emplacement, even at the contact. The capability of the zircon (U–Th)/He method to distinguish deep, mantle source lithologies from upper crustal source lithologies could be used in geochemical exploration for diamonds. Pre-screening of detrital samples using etching and helium assay methods will improve the efficiency and decrease the cost of greenfields exploration.  相似文献   
988.
A wide application of modern precision research techniques to the studies of Pitkyaranta ores allowed us to find increased contents of indium (to 0.33%), silver (447 g/t), gold (0.2–0.4 g/t), and palladium (0.2 g/t). A series of rare minerals previously not found here was also discovered. Among ore minerals, these are roquesite, zavartskite, electrum, stutzite, altaite, bismite, glaucodot, cervelleite, hedleyite, pavonite, cannonite, plantnerite, lindkvistite, ashoverite, etc. The discovery of roquesite and electrum is the most important in terms of metallogeny. Roquesite (indium sulfide) is found in Karelia for the first time. The highest indium contents in direct correlation to those of zinc are characteristic for polymetallic ores of the Pitkyaranta ore fields with sphalerite as the concentrating mineral (to 0.5% of In). The predicted zinc resources are evaluated to ∼2.5 million t for the Pitkyaranta group of ore deposits, and to 400 000 t for the Hopunvaara region. Respectively, the resources of indium amount to ∼2400 t (total) and 600 t for the Hopunvaara region.  相似文献   
989.
U-Pb geochronological results confirm the Mesozoic age (124 ± 1 Ma) of the Beket granitoid complex, previously interpreted as being one of the markers amongst the Early Proterozoic magmatic complexes within the Amur superterrane (microcontinent) of the Central Asian Fold Belt. This implies that the structural and metamorphic amphibolite facies overprints documented either in the Beket granitoids or Gonzha host rocks are evidently Mesozoic rather than Early Proterozoic in age.  相似文献   
990.
The PbS-Bi2S3 join was studied up to 25 mole percent Bi2S3 by electron microscopy and diffraction. It was found that Bi2S3 can be incorporated into the PbS matrix by tropochemical twinning, forming isolated {113}PbS microtwins, or after clustering of these defects, lamellar twinned regions. Only two known mineral members of the homologous series (lillianite Pb3Bi2S6 and heyrowskyite Pb6Bi2S9) were found to be stable in this part of the PbS-Bi2S3 join, while irregularly spaced twin bands within these two structures were observed where deviations in the PbS/Bi2S3 ratio from 6/1 and 3/1, respectively, took place. No ordered intergrowth members were found between heyrowskyite and lillianite. The difference between the PbS-Bi2S3 join and the analogous MnS-Y2S3 one was attributed to the lone pair of nonbonded electrons from the Bi3+ ions, which tends to concentrate these ions in the vicinity of the twin planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号