首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120121篇
  免费   1806篇
  国内免费   906篇
测绘学   2881篇
大气科学   8545篇
地球物理   23073篇
地质学   45011篇
海洋学   10250篇
天文学   26159篇
综合类   387篇
自然地理   6527篇
  2022年   663篇
  2021年   1134篇
  2020年   1231篇
  2019年   1394篇
  2018年   4489篇
  2017年   4119篇
  2016年   4048篇
  2015年   1723篇
  2014年   3074篇
  2013年   5506篇
  2012年   3939篇
  2011年   5961篇
  2010年   5326篇
  2009年   6545篇
  2008年   5576篇
  2007年   5953篇
  2006年   4280篇
  2005年   3327篇
  2004年   3246篇
  2003年   3133篇
  2002年   3007篇
  2001年   2497篇
  2000年   2516篇
  1999年   1982篇
  1998年   1996篇
  1997年   1909篇
  1996年   1654篇
  1995年   1629篇
  1994年   1401篇
  1993年   1303篇
  1992年   1251篇
  1991年   1279篇
  1990年   1258篇
  1989年   1134篇
  1988年   1048篇
  1987年   1239篇
  1986年   1123篇
  1985年   1323篇
  1984年   1515篇
  1983年   1465篇
  1982年   1344篇
  1981年   1288篇
  1980年   1161篇
  1979年   1106篇
  1978年   1099篇
  1977年   970篇
  1976年   931篇
  1975年   903篇
  1974年   934篇
  1973年   995篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
771.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
772.
The Kuroko deposits of NE Honshu are a key type deposit for the study of volcanogenic massive sulfide deposits. However, these deposits have not been studied in detail since the early 1980's and knowledge of their mode of formation is now dated. In this study, we present the analysis of 12 samples of the Kuroko deposits, 12 samples of submarine hydrothermal minerals from the Sunrise deposit and 6 samples from Suiyo Seamount, both of which are located on the Izu-Ogasawara (Bonin) Arc, for 27 elements. For the Kuroko deposit, Cd>Sb>Ag>Pb>Hg>As>Zn>Cu are highly enriched, Au>Te>Bi>Ba>Mo are moderately enriched, In>Tl are somewhat enriched and Fe is not significantly enriched relative to the average continental crust. Within each of these deposits, a similar pattern of element associations is apparent: Zn–Pb with As, Sb, Cd, Ag, Hg, Tl and Au; Fe–Cu–Ba with As, Sb, Ag, Tl, Mo, Te and Au; Si–Ba with Ag and Au; CaSO4. The enrichment of the chalcophilic elements in these deposits is consistent with hydrothermal leaching of these elements from the host rocks which are dominantly rhyolite–dacite in the case of the Kuroko deposits, rhyolite in the case of the Sunrise deposit and dacite–rhyolite in the case of the Suiyo Seamount deposit. However, this pattern of element enrichment is also similar to that observed in fumarolic gas condensates from andesitic volcanoes. This suggests that there may be a significant magmatic contribution to the composition of the hydrothermal fluids responsible for the formation of the Kuroko deposits, although it is not yet possible to quantify the relative contributions of these two sources of elements.The compositional data show that Sunrise and Suiyo Seamount deposits are much closer compositionally to the Kuroko deposits from NE Honshu than are the submarine hydrothermal deposits from the JADE site in the Okinawa Trough which contain, on average, significantly higher concentrations of Pb, Zn, Sb, As and Ag than each of these deposits. In spite of the greater similarity in tectonic setting of the Hokuroku Basin in which the Kuroko deposits formed to the Okinawa Trough (intracontinental rifted back-arc basin) compared to Myojin Knoll and Suiyo Seamount (active arc volcanoes), it appears that submarine hydrothermal deposits from Myojin Knoll and Suiyo Seamount are closer analogues of the Kuroko deposit than are those from the Okinawa Trough. The present data are consistent with the magmatic hydrothermal model for the formation of Kuroko-type deposits as formulated by Urabe and Marumo [Urabe, T., Marumo, K., 1991. A new model for Kuroko-type deposits of Japan. Episodes 14, 246–251].  相似文献   
773.
H.M. Rajesh   《Ore Geology Reviews》2008,33(3-4):382-396
The Rockhole area, Northern Territory, Australia, hosts a number of Proterozoic unconformity-related uranium deposits. The geology of the area features within Paleoproterozoic rocks of the Pine Creek Orogen, near the unconformity with overlying platform cover sandstone of the Paleo- to Mesoproterozoic McArthur Basin. Landsat Enhanced Thematic Mapper plus (ETM+) data was used in the Rockhole area to assist in mapping geological structures and lithology, and to identify anomalous concentrations of ferrous minerals, the product of alteration, which can be indicators of buried uranium mineralization. Several image-processing procedures were applied to the ETM+ data to identify, isolate and enhance mineralogical information as simple and complex false color composites. ETM+ 754 shown as red green and blue respectively was the best simple image. Overall, complex images based on Principal Component Analysis proved to be the most useful products. Sandstone, shale and siltstone, the target lithologies, Koolpin Formation, the target stratigraphic unit, and bleaching pattern due to the removal of iron(II) compounds, the target alteration pattern, were confidently mapped to provide information required by the mineral emplacement model, which ultimately identified areas of likely uranium mineralization. Thus the contrasting behavior of the two principle oxidation states of uranium and iron can be utilized to map/delineate bleached alteration zones associated with economic concentrations of uranium using multispectral sensors like Landsat or better hyperspectral sensors.  相似文献   
774.
With a multi-proxy approach, an attempt was made to constrain productivity and bottom-water redox conditions and their effects on the phosphorus accumulation rate at the Mohammed Plage section on the Tarfaya coast, Morocco, during the Cenomanian-Turonian Anoxic Event (OAE 2). A distinct δ13Corg isotope excursion of +2.5‰ occurs close to the top of the section. The unusually abrupt shift of the isotope excursion and disappearance of several planktonic foraminiferal species (e.g. Rotalipora cushmani and Rotalipora greenhornensis) in this level suggests a hiatus of between 40–60 kyrs at the excursion onset. Nevertheless, it was possible to determine both the long-term environmental history as well as the processes that took place immediately prior to and during OAE 2. TOC% values increase gradually from the base of the section to the top (from 2.5% to 10%). This is interpreted as the consequence of a long-term eustatic sea-level rise and subsidence causing the encroachment of less oxic waters into the Tarfaya Basin. Similarly a reduction in the mineralogically constructed ‘detrital index’ can be explained by the decrease in the continental flux of terrigenous material due to a relative sea-level rise. A speciation of phosphorus in the upper part of the section, which spans the start and mid-stages of OAE 2, shows overall higher abundances of Preactive mass accumulation rates before the isotope excursion onset and lower values during the plateau. Due to the probable short hiatus, the onset of the decrease in phosphorus content relative to the isotope excursion is uncertain, although the excursion plateau already contains lower concentrations. The Corg/Ptotal and V/Al ratios suggest that this reduction was mostly likely caused by a decrease in the available bottom oxygen content (probably as a result of higher productivity) and a corresponding fall in the phosphorus retention ability of the sediment. Productivity appears to have remained high during the isotope plateau possibly due to a combination of ocean-surface fertilisation via increased aridity (increased K/Al and Ti/Al ratios) and/or higher dissolved inorganic phosphorus content in the water column as a result of the decrease in sediment P retention. The evidence for decreased P-burial has been observed in many other palaeoenvironments during OAE 2. Tarfaya's unique upwelling paleosituation provides strong evidence that the nutrient recycling was a global phenomenon and therefore a critical factor in starting and sustaining OAE 2.  相似文献   
775.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
776.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   
777.
Realizing the importance of aerosol physical properties at the adjoining continental and coastal locations in the airmass pathways onto the oceanic region, extensive measurements of aerosol physical properties were made at Visakhapatnam (17.7°N, 83.3°E), an eastern coastal location in peninsular India during the ICARB period. The temporal variations of aerosol optical depth, near surface aerosol mass size distributions and BC mass concentrations show significantly higher aerosol optical depth and near surface mass concentrations during the first and last weeks of April 2007. The mean BC mass fraction in the fine mode aerosol was around 11%. The aerosol back scatter profiles derived from Micro Pulse Lidar indicate a clear airmass subsidence on the days with higher aerosol optical depths and near surface mass fraction. A comparison of the temporal variation of the aerosol properties at Visakhapatnam with the MODIS derived aerosol optical depth along the cruise locations indicates a resemblance in the temporal variation suggesting that the aerosol transport from the eastern coastal regions of peninsular India could significantly affect the aerosol optical properties at the near coastal oceanic regions and that the affect significantly reduced at the farther regions.  相似文献   
778.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
779.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   
780.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号