首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118438篇
  免费   1980篇
  国内免费   983篇
测绘学   2882篇
大气科学   8089篇
地球物理   22884篇
地质学   42444篇
海洋学   10774篇
天文学   27418篇
综合类   352篇
自然地理   6558篇
  2022年   773篇
  2021年   1307篇
  2020年   1407篇
  2019年   1576篇
  2018年   3336篇
  2017年   3115篇
  2016年   3751篇
  2015年   1979篇
  2014年   3625篇
  2013年   6233篇
  2012年   3859篇
  2011年   5043篇
  2010年   4530篇
  2009年   5795篇
  2008年   5075篇
  2007年   5140篇
  2006年   4759篇
  2005年   3497篇
  2004年   3482篇
  2003年   3306篇
  2002年   3216篇
  2001年   2800篇
  2000年   2695篇
  1999年   2181篇
  1998年   2263篇
  1997年   2066篇
  1996年   1824篇
  1995年   1785篇
  1994年   1536篇
  1993年   1421篇
  1992年   1368篇
  1991年   1397篇
  1990年   1388篇
  1989年   1175篇
  1988年   1124篇
  1987年   1275篇
  1986年   1154篇
  1985年   1416篇
  1984年   1587篇
  1983年   1476篇
  1982年   1381篇
  1981年   1280篇
  1980年   1171篇
  1979年   1135篇
  1978年   1083篇
  1977年   918篇
  1976年   896篇
  1975年   890篇
  1974年   844篇
  1973年   916篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
501.
The equilibrium of a self gravitating cylindrical polytrope with a general magnetic field and rotation has been discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
502.
Radio emission of the historical supernovae remnants Tycho (SNR1572) and Kepler (SNR1604) and evolution of their luminosity are considered. Measurement data of secular luminosity decrease rate, obtained earlier by the authors, were corrected with account of variation in time of the flux density of the reference sources. As a result, it is found that the SNR1604 luminosity at 1667 MHz is weakening with an annual mean rate equal to (0.2 ± 0.07)%. The corresponding rate for SNR1572 is (0.47 ± 0.05)%. Since the radio luminosity evolution, as well as energy densities of magnetic field and relativistic electrons inside SNR1604 and SNR1572 are essentially different, these remnants should be considered as different types of supernovae. Bandiera classified SN1604 as type SNIb or SNII.  相似文献   
503.
A new method is suggested for finding the preliminary orbit from three complete measurements of the angular coordinates of a celestial body developed by analogy with the classic Lagrange–Gauss method. The proposed method uses the intermediate orbit that we had constructed in an earlier paper based on two position vectors and the corresponding time interval. This intermediate orbit allows for most of the perturbations in the motion of the body. Using the orbital motion of asteroid 1566 Icarus as an example, we compare the results obtained by applying the classic and the new method. The comparison shows the new method to be highly efficient for studying perturbed motion. It is especially efficient if applied to high-precision observational data covering short orbital arcs.  相似文献   
504.
We study in great detail the geometry of the homoclinic tangle, with respect to the energy, corresponding to an unstable periodic orbit of type 1:2, on a surface of section representing a 2-D Hamiltonian system. The tangle consists of two resonance areas, in contrast with the tangles of type-l or -{l, m, k, x = 0} considered in previous studies, that consist of only one resonance area. We study the intersections of the inner and outer lobes of the same resonance area and of the two resonance areas. The intersections of the lobes follow certain rules. The detailed study of these rules allows us to derive quantitative relations about the number of intersections and to understand the complex behavior of the higher order lobes by studying the lower order lobes. We find 1st, 2nd, 3rd, etc. order intersections formed by lobes making 1, 2, 3, etc. turns around an island. After a sufficiently high order of iterations a lobe may intersect its image and thus produce a Poincaré recurrence. Numerical results for a wide interval of energies are presented. The number of intersections changes through tangencies. In any finite interval of the energy between two tangencies of 1st order, an infinite number of higher order tangencies occur and thus, according to the Newhouse theorem, there exist nearby islands of stability.  相似文献   
505.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
506.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   
507.
This paper reports results from an experiment designed to measure the nascent rovibrational population of H2 molecules that have formed through the heterogeneous recombination of H atoms on the surface of cosmic dust analogues under conditions approaching those of the interstellar medium (ISM). H2 that has formed on a highly oriented pyrolytic graphite (HOPG) surface has been detected, using laser induced resonance-enhanced multi-photon ionization (REMPI), in the v = 1 (J= 0–3) rovibrational states at surface temperatures of 30 K and 50 K. These excited product molecules display rotational temperatures significantly higher than the target surface temperature. These first results suggest that a considerable proportion of the binding energy released on formation of the H2 is deposited in the surface, in addition to internal excitation of the product molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
508.
We report the discovery of the first probable Galactic [WN] central star of a planetary nebula (CSPN). The planetary nebula candidate was found during our systematic scans of the AAO/UKST Hα Survey of the Milky Way. Subsequent confirmatory spectroscopy of the nebula and central star reveals the remarkable nature of this object. The nebular spectrum shows emission lines with large expansion velocities exceeding 150 km s−1, suggesting that perhaps the object is not a conventional planetary nebula. The central star itself is very red and is identified as being of the [WN] class, which makes it unique in the Galaxy. A large body of supplementary observational data supports the hypothesis that this object is indeed a planetary nebula and not a Population I Wolf–Rayet star with a ring nebula.  相似文献   
509.
510.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号