首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29220篇
  免费   5618篇
  国内免费   8214篇
测绘学   1537篇
大气科学   5364篇
地球物理   7693篇
地质学   17167篇
海洋学   3441篇
天文学   1229篇
综合类   3382篇
自然地理   3239篇
  2024年   113篇
  2023年   478篇
  2022年   1073篇
  2021年   1287篇
  2020年   1042篇
  2019年   1172篇
  2018年   1381篇
  2017年   1272篇
  2016年   1486篇
  2015年   1158篇
  2014年   1496篇
  2013年   1458篇
  2012年   1332篇
  2011年   1853篇
  2010年   1603篇
  2009年   1755篇
  2008年   1351篇
  2007年   1454篇
  2006年   1398篇
  2005年   1518篇
  2004年   1812篇
  2003年   1499篇
  2002年   1280篇
  2001年   1107篇
  2000年   1088篇
  1999年   1406篇
  1998年   1220篇
  1997年   1276篇
  1996年   1127篇
  1995年   943篇
  1994年   764篇
  1993年   871篇
  1992年   723篇
  1991年   472篇
  1990年   327篇
  1989年   280篇
  1988年   225篇
  1987年   193篇
  1986年   149篇
  1985年   90篇
  1984年   69篇
  1983年   57篇
  1982年   49篇
  1981年   35篇
  1980年   40篇
  1979年   32篇
  1978年   22篇
  1977年   27篇
  1976年   21篇
  1958年   21篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
961.
冀西北麻粒岩区早前寒武纪主要地质事件的年代格架   总被引:21,自引:0,他引:21       下载免费PDF全文
耿元生  刘敦一 《地质学报》1997,71(4):316-327
本文通过年代学资料和其它地质依据建立了冀西北及邻区麻粒岩地体早前寒武纪主要地质事件的年代格架。早期的基性火山喷发事件发生在2868—2932Ma期间,形成本区的早期地壳。在2761Ma左右发生了大规模的TTG岩浆侵位事件,在2650Ma时发生了基性岩浆侵位,使地壳加厚。在2561—2503Ma期间,花岗闪长质岩浆在本区广泛侵入,使地壳进一步加厚。2477—2461Ma期间,紫苏花岗岩以岩株形式侵入,同时发生区域麻粒岩相变质,早期地壳受到改造。大约在2300Ma时发生第二阶段的麻粒岩相变质。此后,在2144—2087Ma期间红色花岗岩侵位,形成花岗岩带。  相似文献   
962.
In No. 50 kimberlite pipe of Fuxian County, Liaoning Province, an eclogite inclusion(nodule), which is extremely rare in kimberlites, was discovered and phlogopite exsolutionlamellae were found in garnets of the inclusion. Microscopic, TEM and energy spectral observa-tions and studies confirmed that these lamellae are phlogopite. They are colourless and acicularin section, generally 0.5-5μm in width and 10-100μm in length. Nevertheless, fine lamellae,0.05-0.1μm wide and 1-2μm long, are also well developed. Along [111] of the garnet, three setsof phlogopite lamellae show oriented arrangement approximately at angles of 60°-70°, indi-cating that these lamellae might be the product of exsolution from garnet as a result ofpressure-release when eclogite ascended from the relatively deep level to the relatively shallowlevel of the mantle. Tiny acicular exsolution minerals (or inclusions) are commonly found ingarnet and pyroxene in eclogite inclusions of kimberlites all over the world and it has been re-ported that the identified exsolution minerals include pyroxene and rutile. This is the first timethat phlogopite exsolution lamillae were found in eclogite inclusions in the world.  相似文献   
963.
Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.  相似文献   
964.
Mineralization Ages of the Jiapigou Gold Deposits,Jilin   总被引:1,自引:0,他引:1  
The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-Pb dating and quartz K-Ar,~(40)Ar-~(39)Ar andRb-Sr datings, the main mineralization stage of the Jiapigou deposit has been determined to be2469-2475 Ma, while mineralization superimposition on the gold deposit occurred in1800-2000 Ma and 130-272 Ma. They form a mineralization framework of one oldermetallogenic epoch (Late Archaean-Early Proterozoic) and one younger metallogenic epoch(Mesozoic) of gold deposits in Archaean greenstone belts in China.  相似文献   
965.
Four metallogenic epochs occurred in different tectonic environments during theevolution of the Northern Qilian metallogenic province through the geological time. The Mid-dle Proterozoic metallogenic epoch witnessed the tectonic environment of crustal breakupcaused by mantle diapirism, in which ultramafic-mafic rocks were intruded along beep faultbelts and the superlarge Jinchuan magmatic Cu-Ni sulphide deposit was formed. In theMiddle-Late Proterozoic metallogenic epoch the crust was further broken to form anintracontinental rift, in which the Chenjiamiao style massive Cu-Fe sulphide deposits hosted bybasic volcanic tuff were formed in the lower volcano-sedimentary sequence, while the largesedex type Jingtieshan style Fe-Cu deposits were formed within the upper abyssal carbon-richargillaceous sedimentary sequence. The Early Palaeozoic saw the aulacogen environment, with-in which the Baiyinchang style superlarge massive base and precious metal sulphide depositshosted by quartz keratophyric tuff were formed in the Middle-Late Cambrian rifted island arcand the massive Cu-Zn sulphide deposits and magmatic chromite deposits associated with theophiolite suite were formed in the Early-Middle Ordovician, and the Honggou style massiveCu-Fe sulphide deposits hosted by spilite were formed in the Late Ordovician back-arc basinenvironment. In the Late Palaeozoic-Meso-Cenozoic, the metallogenic province went into anintracontinental orogenic stage characterized by compressive tectonic environment, in whichthere occurred carbonate-quartz vein type and tectono-alteration gold deposits associated withductile-shear structures.  相似文献   
966.
The structural feature shown on a remote sensing image is a synthetic result ofcombination of the deformations produced during the entire geological history of an area.Therefore, the respective tectonic stress field of each of the different stages in the complexdeformation of an area can be reconstructed in three steps: (1) geological structures formed atdifferent times are distinguished in remote sensing image interpretation; (2) structuraldeformation fields at different stages are determined by analyzing relationships betweenmicrostructures (joints and fractures) and the related structures (folds and faults); and (3)tectonic stress fields at different stages are respectively recovered through a study of the featuresof structural deformation fields in different periods. Circular structures and related circlular and radial joints are correlated in space to con-cealed structural rises. The authors propose a new method for establishing a natural model ofthe concealed structural rises and calculating the tectonic stress field by using quantitative dataof the remote sensing information of circular structures and related linear structures.  相似文献   
967.
This paper expounds the quantitative tectonic indicators and some qualitative indicators of large earthquakes in the coast areas of Fujian, Guangdong, Taiwan and Hainan. The main quantitative indicators include uplift amplitude of the Moho, Quaternary and Late Holocene coasts. The paper also gives a brief account of the research method on quantitative indicators of surface uplifted zones. Taiwan is a famous neotectonic zone and an area of large earthquakes in the world. There is only one large-earthquake area in each of Fujian, Guangdong and Hainan Provinces. Along the coast large earthquake areas there are certainly many remains of crustal activity. Among these remains, coast activity, taking the sea level as the accurate marker horizon, can determine not only the amplitude of coastal elevation and subsidence in a certain period, but also the cycle and rate of positive or negative movements.  相似文献   
968.
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation  相似文献   
969.
Yixunite and damiaoite Were found in a cobalt- and copper-bearing platinum ore vein of a contact metasomatic deposit. The chief ore minerals are bornite, chalcopyrite, magnetite and carrollite. The platinum minerals include moncheite, sperrylite, daomanite, cobalt malanite and cooperite. Yixunite and damiaoite occur as immiscible globules, 1.0 to 2.0 mm in diameter. Yixunite is always in the central part of a globule. It is opaque with metallic lustre, bright white colour and black streak. HM = 5.8; VHN50 = 634 kg/mm2 (573-681 kg/ mm2); insoluble in HCl, HNO3, HF or H3PO4; no cleavage; no magnetism. Density is hard to measure because of small grain size. Calculated density = 18.21 g/cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are: Pt 82.8 (81.8-83.6), In 16.4(15.6-17.1) and total 99.2. The empirical formula (based on 4 atoms) is Pt2.993 In1.007 . The five strongest lines of X-ray diffraction (hkl, d,I) are 111, 2.30 (100); 200, 1.99 (  相似文献   
970.
Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. Opaque. Lustre metallic. Colour steel-black. Streak black. Hm = 3.7. VHN20= 165 kg/ mm2. Isotropic. Cleavage none. Density 11.96 g/ cm3. Seven electron microprobe analyses give the following mean chemical results (wt. %): S 7.2, Cu 0.3, Te 0.4, Ir 41.2, Pt 2.8 and Bi 47.3 with total 99.1. The simplified formula is IrBiS. The strongest X-ray powder diffraction lines (hkl, d, I) are 210, 2.75 (70); 211, 2.51 (60); 311, 1.860 (100); 440. 1.090 (50) and 600, 1.027 (50). The X-ray powder diffraction pattern is similar to that of mayingite. After the diffraction data are indexed the mineral is determined to be cubic. The space group is P213 with a = 0.6164(4) nm, V = 0.2342 nm3 and Z = 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号