首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   22篇
  国内免费   75篇
测绘学   5篇
大气科学   99篇
地球物理   8篇
地质学   11篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   1篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   2篇
  2006年   6篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1988年   1篇
  1954年   1篇
排序方式: 共有123条查询结果,搜索用时 234 毫秒
41.
在长春—四平地区100 km×100 km的范围内,分布有平均间隔10 km左右的147个自动气象站。结合该区域雷达回波强度资料,对2007~2011年4~10月的气象站雨量计小时降水数据进行质量控制。多步骤质量控制结果显示,有141个自动站雨量计的数据通过了检查,删除了6个错误站点的数据,对有疑问时段的数据作了标记。 利用质量控制后的5年夏季半年自动站雨量计小时降水数据,进行相关关系统计分析表明:距离在10 km以内的雨量计测量,平均相关系数均能达到0.6以上;雨量计距离小于5 km,平均相关系数在0.7以上;而站点距离超过20 km,相关系数普遍降到0.4以下;随着统计时间的增长(从分钟到月降水量),每个雨量计的测量值具有更高的空间代表性。  相似文献   
42.
亚洲夏季风是低层污染物进入平流层的重要途径   总被引:10,自引:4,他引:6  
夏季亚洲季风区是对流层低层水汽和污染物进入全球平流层的一个重要通道, 自然或人为污染物通过该通道进入平流层后对臭氧层的破坏以及全球气候环境的影响, 成为目前国际科学界关注的热点问题。早先观点认为: 夏季青藏高原是对流层低空物质向平流层输送的一个重要渠道。然而, 越来越多的观测表明: 包括青藏高原在内的整个亚洲夏季风通过强对流的快速输送以及大尺度输送过程可以把低层大气物质输送到全球平流层。在地面物质进入平流层的过程中有两个关键过程, 一是垂直快速输送的对流活动, 这对于短寿命化学成分非常重要, 二是缓慢的大尺度反气旋输送和限制作用。但是, 目前对于亚洲季风区不同源区的贡献还有很大的争议。  相似文献   
43.
基于商用运输平台的流动大气和环境监测系统   总被引:2,自引:2,他引:0  
高时空精度大气观测资料的缺乏,仍是制约提高数值天气预报水平和深入开展大气科学研究的一个主要因素。为了克服这一问题,除了研制自动化程度高、测量精度高和性能价格比高的仪器设备来装备现有的定点大气观测网外,还应建设一些流动的大气监测系统,以获得常规大气观测台站空档间(如大洋、山区和荒漠等无人区)的天气现象和大气环境变化的信息。然而,在现有台站网之外,再重新建立并运行一个流动专业观测网,既不经济也是不现实的。随着交通和通信技术的快速发展,利用民用的交通运输工具(主要是商船、民航飞机、火车甚至长途汽车),加装大气环境监测传感器,逐步建立海陆空三位一体的流动大气环境监测系统已成为可能。  相似文献   
44.
近地层大气气溶胶对曙暮光辐射强度和天空颜色的影响   总被引:1,自引:1,他引:0  
采用离散坐标法(DISORT)辐射传输软件包UVSPEC的伪球面模式,计算了300~850 nm波段曙暮光时期地面不同观测仰角的辐射强度和天空颜色.模式选取美国标准大气(U.S. 1976),考虑多次散射效应及水汽、臭氧和二氧化碳的吸收.分析研究了近地层大气不同气溶胶光学厚度时曙暮光天空辐射强度和颜色指数随太阳天顶角和观测仰角的变化.结果表明,曙暮光时天空的红蓝光颜色指数随近地层大气气溶胶光学厚度的变化显著.此方法理论上可以用于近地层气溶胶光学厚度的反演测量.  相似文献   
45.
王萍  陈洪滨  吕达仁 《大气科学》2003,27(6):1067-1076
用差分光学吸收光谱(DOAS)方法,从曙暮光天顶散射可见光光谱资料反演了北京上空的O3和NO2柱含量,并对反演结果进行了验证和误差分析.斜柱含量的反演采用了线性和非线性最小二乘拟合方法,拟合时考虑了O3、NO2和H2O的吸收、Ring效应和散射的影响;斜柱含量除以空气质量因子转换成垂直柱含量.空气质量因子的计算使用伪球面DISORT辐射传输模式.O3和NO2总量的检验分别用北京的Dobson O3资料和卫星SAGE Ⅱ的NO2廓线资料.反演的O3总量与Dobson O3总量相比偏差小于10%;NO2总量与SAGE Ⅱ的偏差约20%.  相似文献   
46.
北京地面紫外辐射(光谱)的观测与分析   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对北京大气物理研究所与长春光机所合作研制的地基太阳紫外辐射光谱仪观测资料的分析,和用辐射传输模式UVSS计算的结果,对影响到达地面的UVB辐照度的主要因子太阳高度角(SZA)、臭氧总量和地表反照率进行了分析研究。最后对紫外光谱仪的观测资料做了总量和谱分析。  相似文献   
47.
为了监测全球海洋上空的大气可降水量,已发射上天多种星载微波波谱仪和辐射计,相应地发展建立了多种反演算式。我们利用逐步回归分析,研究比较了反演晴天大气可降水量(PW)的多种通道组合以及算式中不同的亮温(Ta)函数形式的效果。主要结果有:(1)对应于高中低PW值有不同的最佳通道组合;(2)常选的水汽吸收中心线22.235 GHz不太适合于反演高中且变化范围大的PW值;(3)有必要建立分气候区域和分季节的反演算式;(4)在反演算式中采用ln(T0-TB)一般比线性形式有更好的回归和反演效果,但在有22.235 GHz通道时则不然;(5)反演中低或变化范围大的PW时,22.235 GHz亮温的平方项能显著改善回归和反演结果。  相似文献   
48.
上对流层-下平流层交换过程研究的进展与展望   总被引:29,自引:10,他引:29  
上对流层和下平流层(UTLS)区域的高度范围大致为5~20 km.UTLS区域大气成分的分布及变化对于认识气候长期变化也极为重要,因为该区域的臭氧是一种有效的温室气体,其中的水汽、卷云和气溶胶对太阳短波辐射和地球长波辐射有很强的调制作用,因而对于天气和气候变化产生不可忽略的辐射强迫作用; UTLS区域中,还有航空业的飞机排放,强对流云云中与云上闪电产生相当量的NOx,这些都对UTLS区域乃至更高及更低层大气的化学成分与分布产生重大影响.该文介绍上对流层和下平流层区域的交换过程研究的意义和手段,同时介绍有关研究的进展,重点回顾近年来国内一些学者开展的工作.另外,还列举一些研究问题和方向,最后重点展望青藏高原上空上对流层-下平流层区域的研究,因为该地区UTLS交换过程不仅具有显著区域特征,而且在全球平流层-对流层交换中可能有重要贡献.  相似文献   
49.
权维俊  韩秀珍  陈洪滨 《气象学报》2012,70(6):1356-1366
为了将基于NOAA-9/AVHRR数据提出的Becker和Li的“分裂窗”地表温度算法成功地应用于长序列NOAA/AVHRR和FY 3A/VIRR数据的地表温度反演,为气候变化研究提供长序列、高精度、高分辨率的地表温度数据集,从辐射传输方程出发,首先利用MODTRA 4.1模式模拟了多种地表和大气状态下的光谱辐亮度数据,并结合AVHRR和VIRR通道4、5的光谱响应函数建立了温度数据集(TS,T4,T5);然后,基于该数据集采用最小二乘法重新计算了Becker和Li算法中的各参数,提出了一个适用于NOAA/AVHRR和FY-3A/VIRR数据的改进型Becker和Li分裂窗地表温度反演算法;并利用改进型算法对2008年4月27日03时12分(世界时)观测的一景覆盖北京地区的NOAA-17/AVHRR数据进行了地表温度的反演,将反演结果与日本东京大学提供的同地区、同时相的MODIS地表温度产品进行了对比分析.结果表明,两种地表温度产品的相关系数为0.88,均方根偏差(RMSD)为2.1K;在两种地表温度差值图像的频率直方图上有69.6%的像元的值在±2K之内,37%的像元的值在±1K之内.  相似文献   
50.
浑善达克沙地沙尘气溶胶的粒谱特征   总被引:20,自引:2,他引:20  
浑善达克沙地是我国主要沙尘气溶胶源地之一,但对其沙尘气溶胶特征一直缺乏研究.2001年4月末到5月初,在内蒙古浑善达克沙地利用PMS Fssp-100型激光粒谱仪进行了大气气溶胶的外场观测,取得了晴天、扬沙和沙尘暴天气条件下沙尘粒子的数浓度采样资料,通过统计分析研究,总结出浑善达克沙地在不同天气条件下近地面沙尘气溶胶的粒谱分布规律.所得统计结果表明了与其他源地沙尘气溶胶的共同点、差异之处及其原因.这一结果也为沙尘气溶胶辐射气候效应的数值模拟提供了新的实测依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号