首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   32篇
  国内免费   81篇
地球物理   4篇
地质学   194篇
海洋学   1篇
综合类   1篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   12篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   12篇
  2013年   10篇
  2012年   12篇
  2011年   10篇
  2010年   10篇
  2009年   11篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1984年   2篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
31.
河北大庙铁矿床黑云母40Ar/39Ar年龄及其地质意义   总被引:3,自引:0,他引:3  
文章以野外观察为基础确定了致矿侵入体,以岩相学特征确立了测年样品的代表性。在此基础上,选取大庙铁矿大乌素沟矿区浸染状铁矿石中的黑云母进行了40Ar/39Ar年龄测定,坪年龄为(395.8±3.7) Ma,反等时线年龄为(395.6±4.0) Ma(2σ; MSWD=0.9; n=8)。因此,大庙铁矿及其致矿苏长岩的形成年龄约为396 Ma,相当于中泥盆世,而不是前人所认为的元古宙。新的测年结果与区域上近年来陆续识别出来的泥盆纪侵入岩类形成年龄一致,不仅表明华北克拉通的改造过程至少从泥盆纪就已经开始,而且暗示华北克拉通北缘仍有寻找其他“大庙式铁矿”的潜力。同时,文章提出,用成岩年龄作为成矿年龄时,需要有可靠的地质学和岩相学证据。 关键词:大庙式铁矿;斜长岩;苏长岩;40Ar/39Ar定年;成矿年代;华北克拉通  相似文献   
32.
岩浆成矿系统演化的时空结构与成矿预测体制   总被引:1,自引:0,他引:1  
尽管以往的找矿成果被归功于地物化遥综合找矿法,地质学方法主要起着指导作用,但并没有提供具体的找矿路径。其主要原因在于流行的成矿理论是归纳总结的产物,尚存在许多结构性的缺陷。因此,成矿系统向勘查系统的转换往往不成功。  相似文献   
33.
以岩墙状产出的安妥岭玄武岩形成于早白垩世(K-Ar表观年龄为122.31±1.34 Ma),其内发现橄榄岩包体、碳酸盐矿物集合体以及歪长石、刚玉、金云母巨晶.安妥岭玄武岩中可见橄榄石的碳酸盐化、绿泥石化和蛇纹石化以及单斜辉石的绿泥石化和碳酸盐化.安妥岭玄武岩样品的Si02含量介于46.50%~50.20%,Zr/TiO2-Nb/Y图解投点均落于碱性玄武岩区,微量元素蛛网图解中显示出明显的Nb、Ta和Ti的负异常,具有右倾平滑的稀土配分模式,(La/Yb)PM=33.4~40.1.两件安妥岭玄武岩样品的87Sr/86Sr比值分别为0.71 1300和0.706233,相应的143Nd/144Nd比值和εNd(122 Ma)分别为0.511848及0.511897和-13.73及-12.76.部分熔融源区组成和部分熔融作用控制着安妥岭玄武岩的成分变异,安妥岭玄武岩岩浆在上升过程中没有发生明显的结晶分异和地壳混染作用.运用地幔熔融柱模型,反演获得了安妥岭熔融柱就位于82.5~75.3 km深度范围内,即122.31 Ma时安妥岭岩石圈的厚度为75.3km,并认为安妥岭玄武岩是安妥岭岩石圈拆沉作用的产物.结合邻区南大岭和南口熔融柱深度位置,认为安妥岭-南大岭-南口岩石圈厚度经历小规模减薄(J2)-增厚(J2-K1)-拆沉(K1)-稳定(K1-今)的演化过程,安妥岭岩石圈拆沉作用为安妥岭斑岩钼矿形成的深部控制因素.  相似文献   
34.
塔里木盆地东南缘的阿克塔什塔格地区,保存有较为完好的早前寒武纪基底变质岩——阿克塔什塔格杂岩,主要由米兰岩群、新太古代TTG花岗片麻岩和侵入其中的各类古元古代花岗片麻岩构成。其中米兰岩群和TTG片麻岩发育塑性流变褶皱和高角闪岩相-麻粒岩相变质,具有强烈的混合岩化,并遭受后期的角闪岩相变质改造。米兰岩群中的长英质片麻岩和TTG岩系的锆石SHRIMP U-Pb年龄分别为(2 567±32)Ma和(2 592±15)Ma,二者普遍低Si高Al、富Na贫K、富Sr贫Mg、富集LILE和LREE,亏损HSFE和HREE、轻重稀土分馏强烈、Eu异常不明显,具有类似于埃达克岩的岩石地球化学特征,表明它们形成于俯冲带的岛弧环境,为岛弧玄武岩俯冲至下地壳部分熔融的产物,指示了塔里木盆地东南缘新太古代晚期古老克拉通的大陆地壳水平增生。在此基础上,文章还探讨了塔里木盆地周缘早前寒武纪基底岩系的年代格架问题,认为塔里木盆地具有统一的早前寒武纪变质基底。  相似文献   
35.
与超基性岩浆作用有关的铜镍硫化物矿床主要有两种成矿建造,一种为含铬建造,另一种为含铂建造。尖晶石类矿物成分的变化清楚地反映了这两类建造的成矿属性,含铬建造的尖晶石属于铬铁矿-尖晶石系列,含铂建造中则为尖晶石-磁铁矿系列。从含铬建造向含铂建造转变的原因,可以解释为超基性岩艇中硫的作用增加,从而引起反应:4FeO+S=FeS+Fe3O4(磁铁矿),同时分散性铂族元素的专属性特征也发生相应变化(Ru+Os+Ir)→(Pt+Pd)。因此,含铬建造中主要富含Ru、Os和Ir,而含铂建造中则富含Pt和Pd。超基性岩浆作用中硫的化学活动性增加与基碱度增加直接有关。因此,含铂的超基性岩大多数情况下与富碱的玄武岩形成共生组合,当富铁熔浆发生硫化作用时,将会导致硫化物与硅酸岩熔浆的不混融,从而形成矿浆,据此,金川含铂铜镍矿石不是矿  相似文献   
36.
青藏高原新生代形成演化的整合模型——来自火成岩的约束   总被引:36,自引:8,他引:28  
深部过程是青藏高原演化的主导因素,其他地质过程都可以看作是对深部过程的响应。因此,一个构造旋回(阶段)的地球动力学事件链可以概括为深部地质过程—幔源岩浆活动—壳源岩浆活动—陆壳增厚—地表隆升—表层剥蚀与沉积,其中幔源岩浆活动的研究成为追索青藏高原演化历史的关键环节。据此,青藏高原演化的关键性时间坐标为80、45、27、17、9和4Ma。青藏高原新生代火成岩具有三种展布形式:与雅鲁藏布缝合带平行的岩浆带、沿深大断裂展布的岩浆带和藏北离散性岩浆分布区,它们分别受控于大陆碰撞、大规模走滑和岩石圈拆沉构造体制,且都受控于印度—亚洲软流圈汇聚过程。据此,文中提出了一个描述青藏高原演化的整合模型:南北向地幔对流汇聚控制了岩石圈块体的相对运动,并最终导致印度—亚洲大陆的碰撞和沿碰撞带的大规模岩浆活动;碰撞之初(白垩纪末期),大陆岩石圈块体的刚性属性有利于应力的远程传递和块体旋转,沿块体边界分布的大型走滑断裂控制了岩浆活动的发生;随着挤压过程的持续进行,岩石圈块体的受热和变形,高原岩石圈的重力不稳定性增加,最终导致拆沉作用和软流圈物质的大规模上涌以及藏北高原的离散性岩浆活动。在高原演化中,岩石圈拆沉作用具有重要意义,许多地质事件的发生都与此有关。同时,软流圈的汇聚还导致软流圈物质的向东挤出,并因此造成青藏高原岩石圈的向东挤出和晚新生代的伸展构造。  相似文献   
37.
东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征   总被引:29,自引:1,他引:29  
本文报道了东昆仑造山带三叠纪辉长岩、花岗岩类及其包裹体的Pb、Sr、Nd和O同位素组成。东昆仑造山带花岗质岩石全岩和长石Pb同位素组成相差不大,具明显的造山带Pb同位素特征;Sr同位素初始值(ISr)变化于0.70144~0.70972之间,暗示幔源成因;εNd值变化于-4.49939~-9.19258之间,具壳源成因特点;Nd同位素模式年龄(tDM)在1.38~1.761Ga之间,与中元古代变质岩相当;O同位素组成变化范围7.8~9.5,表明花岗岩类成岩物质主要来自地壳。综合岩石的同位素组成,结合矿物学、岩石地球化学的研究,表明花岗岩浆主要起源于地壳,但与来自地幔的基性岩浆曾发生过混合作用,从而导致同位素组成趋于一致。  相似文献   
38.
南海海盆15°N附近呈东西向展布的珍贝-黄岩海山被认为是32~17Ma前南海海盆的残留扩张中心.对采自黄岩海山的两个火山岩样品(9DG,9DG-2)进行了岩石学、地球化学和年代学研究.两个样品的SiO2含量分别为60.3%和63.6%,Al2O3含量分别为17.56%和17.55%,TiO2含量分别为0.48%和0.31%,碱度率分别为3.88和3.62.根据岩石学和岩石化学分类,样品属碱性系列的粗面岩.对稀土元素和微量元素分析表明岩石具有洋岛玄武岩(OIB)型配分型式,轻重稀土总量比(∑c(LREE)/∑c(HREE))和球粒陨石标准化镧镱比((La/Yb)N)分别高达17.22和27.23,并具有铕负异常和锶、磷、钛亏损的特点.样品9DG的锶-钕-铅同位素分析结果为锶-87的含量与锶-86的含量之比值为0.704183,钕-143的含量与钕-144的含量之比值为0.512827,铅-206的含量与铅-207的含量之比值为18.68668,铅-207的含量与铅-204的含量之值为15.67962,铅-208的含量与铅-204的含量之比值为39.00261,表明初始岩浆来自软流圈地幔,具有与珍贝海山玄武岩相似的同位素组成.经钾-氩法测年,粗面岩的年龄为(7.77±0.49)Ma,略晚于珍贝海山玄武岩的年龄[(9.1±1.29)~10.0±1.80Ma],属于南海扩张期后晚中新世火山活动的产物.对比珍贝海山玄武岩的地球化学和同位素特征,认为两者有相同的岩浆源区,但是它们经历了不同程度的结晶分异过程,在晚中新世期间珍贝-黄岩海山可能有地幔柱活动.  相似文献   
39.
碰撞造山带斑岩型矿床的深部约束机制   总被引:19,自引:8,他引:11  
在印度-亚洲大陆碰撞过程中,俯冲板片断离触发了幔源岩浆底侵作用、下地壳部分熔融和冈底斯岩基带以及同岩基斑岩的产生.在此过程中,幔源岩浆分离结晶的产物、下地壳岩石部分熔融残余和地壳分异过程中下沉的镁铁质块体,构成了加厚下地壳.随着造山岩石圈的冷却和加厚下地壳重力不稳定性的增加,岩石圈拆沉作用触发了后碰撞斑岩型岩浆活动.与此相应,碰撞造山带斑岩型矿床可以形成于同碰撞和后碰撞两个不同的构造阶段.同碰撞成矿作用发生于岩基带形成时期,成矿物质主要来自于底侵幔源岩浆及更深部的含矿流体,其触发机制是俯冲板片的断离.后碰撞成矿作用发生于加厚下地壳冷却之后,成矿物质主要来自于新生矿源层和更深部的含矿流体,其触发机制为岩石圈拆沉作用.在同碰撞构造阶段,伴随着幔源岩浆的底侵作用,深部流体和幔源岩浆所含的成矿物质被注入到岩基岩浆中,与从岩基岩浆源区萃取的成矿物质汇聚在一起,一部分受岩基热的驱使上升成矿.由于流体中成矿元素的浓度强烈依赖于压力,另一部分成矿元素则滞留在难熔残余中形成新的矿源层.当发生岩石圈拆沉作用时,由此矿源层部分熔融形成的斑岩岩浆将相对富含成矿物质,导致碰撞造山带第二次成矿作用大爆发.  相似文献   
40.
四川康定-冕宁地区变质侵入岩的地球化学及Nd同位素研究   总被引:1,自引:0,他引:1  
通过对四川康定-冕宁地区出露的康定杂岩中基性、中性、酸性岩岩石学、微量元素地球化学、Sm-Nd同位素等多方面系统研究,确定这套岩石形成于岛弧环境.Sm-Nd同位素未能形成等时线,说明可能岩石形成后经历了较高温度的热扰动,εNd(t)大于零,表明样品可能来源于一个较为亏损的地幔,其亏损地幔模式年龄集中在1.2~1.4Ga.通过对该区岩石的AFC(同化混染结晶分离)过程模拟,说明岛弧岩浆形成后分离结晶时同化混染围岩,中-酸性深成岩体是残留岩浆,约为原始岩浆量的60%,其结晶形成的混染速率与结晶速率比值约0.9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号