排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
洪湖分蓄洪区洪水淹没风险动态识别与可能损失评估 总被引:1,自引:0,他引:1
全球气候变化和社会经济快速发展,使长江流域面临越来越严重的防洪压力.在长江流域开展洪水淹没风险识别与洪水损失评估工作,对于长江流域洪水风险管理具有重大意义.本项研究以洪湖分蓄洪区为案例,采用基于GIS栅格数据整合于Arcview3.x的二维水文-水动力学模型进行洪水淹没风险动态识别,并且根据土地利用分类及其单位面积价值,建立洪水淹没损失函数,进行洪水淹没动态损失评估,建立了东洪湖分蓄洪区洪水淹没动态损失数据库,为东洪湖分蓄洪区的合理利用提供定量科学依据.洪水淹没动态风险识别基于数字高程模型进行,采用修正的1998年夏季洪水水位-时间水文过程线对模型参数进行调整,并以地面糙率反映不同地表覆盖形态对洪水演进过程的影响. 相似文献
22.
选用CMIP6中13种全球气候模式数据,以CN05.1数据作为实测资料,对1961—2014年中国气温进行模拟及模式能力评估。采用BMA、泰勒图评估模式排名,并将BMA与算术平均(AVG)集合结果进行比较。结果表明,泰勒图评分和BMA权重在最优和最劣模式评价中基本一致,模拟效果最好的两种模式为ACCESS-ESM1-5、INM-CM5-0。BMA集合模拟结果优于AVG方法,CN05.1、BMA、AVG方法得到的中国多年平均气温分别为6.18、5.95和4.92 ℃,BMA方法通过权重调节使整体系统误差最小。BMA和AVG方法集合的CMIP6气候模式在对中国气温模拟的空间分布形式上与实测差距不大,而局部地域分布情况有所区别。BMA方法不仅可以对CMIP6模式进行有效评估,并且其集合模拟结果的时间及空间变化情况都与实测值更接近。 相似文献
23.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。 相似文献
24.
土壤湿度是联系陆地水循环和能量循环的纽带,是地表最重要的水资源,也是一个重要的气象预报因子。基于风云三号卫星微波资料,采用能量辐射传输模型反演了我国逐日地表土壤湿度(FY-3B),并估算了其系统误差;然后,与中国气象局农业气象站观测资料和ERA-Interim、NCEP再分析资料进行了对比分析。研究结果表明,FY-3B土壤湿度呈由西北地区向东北和东南地区逐渐增加的空间分布特征,与农气站观测资料和两套再分析资料基本一致;其系统误差与植被覆盖度密切相关,我国西南部植被茂密的地区系统误差较大。FY-3B土壤湿度的季节性变化与农气站观测资料在全国范围有较好的一致性,总体表现为冬季土壤湿度较高,随着春季气温升高蒸散发增加,土壤湿度逐渐降低;夏天雨季来临,土壤湿度回升。然而,FY-3B土壤湿度与ERA-Interim和NCEP再分析资料在东北部分地区和长江流域以南呈很强的负相关,这主要是由于季节性干湿变化的不一致性所致;这表明,ERA-Interim和NCEP土壤湿度再分析资料在这些地区存在较大的不确定性。 相似文献