排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.
利用2008~2009年期间约10景HJ-1B/IRS热红外波段遥感数据和过境时刻相应的气象观测数据,以EOS/MODIS温度产品为参照,在单窗算法的基础上,基于水体目标对该算法的参数进行修正,建立HJ-1B/IRS水体温度反演模型;将该模型反演的水体温度及采用单窗算法参数计算的温度与EOS/MODIS温度产品进行比较结果表明:采用单窗算法参数计算出的水体温度与EOS/MODIS温度产品的绝对平均误差为7.84℃;采用本研究得到的参数所反演的温度与EOS/MODIS温度产品的绝对平均误差为0.83℃。将水温反演模型应用于辽东湾区域,实现对该区域水温的动态监测。 相似文献
22.
研制了一套船载海洋激光雷达,用于探测海水光学参数垂直廓线。2017年8月,该系统在黄海海域进行了实验测量。在准单次散射模型中引入原位测量的光学参数,实现了理想激光雷达回波信号的模拟,并将该理想信号与系统响应函数卷积后精确复现了实验的激光雷达信号。采用Fernald后向迭代积分法(简称Fernald法),比较了不同水体悬浮物激光雷达比下反演的激光雷达衰减系数α与原位漫射衰减系数Kd的差别。基于停航时标定的水体悬浮物激光雷达比,采用Fernald法获得了走航时的激光雷达衰减系数。进一步地,提出一种基于米散射激光雷达数据和原位测量的后向散射数据的融合算法,模拟了高光谱分辨率激光雷达(HSRL)反演α的过程,并将其与Fernald法进行了比较。实验结果表明,自研的海洋激光雷达能够有效探测海水光学参数,基于合适的水体悬浮物激光雷达比的Fernald法可以有效应用于米散射激光雷达的反演,未来无需假设的HSRL在海水光学参数探测领域具有更大的优势。 相似文献
23.
海岸带作为海洋、陆地和大气共同作用的地带,其地物混杂度大,变化频繁,单纯利用光谱特征分类难以取得理想的精度。
但海岸带地物滨临水体,而水体与地物存在巨大光谱差异,易于识别。据此,本文尝试提出一种简单的加入空间关系的遥感图像分类
方法,即,先准确识别出海水类,然后统计非海水类的每一个像元到最近海水的空间距离。由于不同的海岸带地类距离海水的空间距
离有其自身的特点,因此,利用这一距离信息辅助分类能提高分类精度,尤其是针对那些光谱特征相近而距离相差较大的地类。 相似文献
24.
25.
26.
利用海岸线的海洋遥感图像控制点(GCP)自动匹配法 总被引:3,自引:2,他引:3
研究一种利用海岸线自动确定海上地面控制点(GCP)的方法.借助边缘检测技术提取海岸线,将海岸线的点全部作为控制点的备选集合,利用相关松弛法寻找同名点,建立一种可靠判别机制来保证海岸线上GCP的正确性,通过平均法和插值法求取海上GCP的值.利用本方法可以方便地得到分布密集的GCP值,其中海上GCP值具有子像元精度.同时研究了一种新的几何变换方法,即用插值法直接求取需校正图像的几何变换坐标,随着插值密度的增加,求得海上GCP值的点就越多,最后使所有点的坐标值通过插值方法计算得到,代替二元n次方程组进行空间坐标变换,使遥感图像的几何配准误差在某种程度上达到0,利用该方法对海洋遥感资料进行几何配准,可以提高配准的精度和节省机时,为遥感资料的动态监测和数据库建设创造了有利条件. 相似文献
27.
为了使更多的用户尽快使用SeaWiFS资料,国家海洋局第二海洋研究所将SeaWiFS产品从复杂的HDF格式转换为简单的海洋二所格式。HDF格式在记录结构,函数调用方式,参数存放次序三方面说明,海洋二所为实现格式转换花费大量时间和精力是非常必要的,为许多用户在SeaWiFS资料应用中节省了宝贵的时间,大大扩大了SeaWiFS资料的应用面和利用率。 相似文献
28.
浮游藻类是海水中的重要组成成分,对其固有光学特性的研究有助于深入了解水体光学的辐射传输。在过去的30年中,大量的研究都集中在藻类吸收特性上,缺少对其散射特性的认识。本文利用分光光度计设计了在实验室中测量含颗粒水体散射和后向散射特性的方法,并利用标准球形颗粒对该方法的可行性进行验证,结果表明,在400~700 nm范围内,散射测量结果与理论值的一致性较好,最大误差小于3%,而后向散射测量结果在蓝紫光处的一致性较好,在近红外波段处有一定误差。运用这两种测量方法对东中国海常见的赤潮藻种中肋骨条藻Skeletonema costatum和东海原甲藻Prorocentrum donghaiense进行测量,结果显示:中肋骨条藻与东海原甲藻的散射系数幅值相近但谱形差异较大,前者随波长增加散射强度递减,后者则相反;在色素吸收较强的波段,两者散射强度均出现与其它波长位置变化趋势相反的情况,这主要是受细胞物质物理性质的影响。两者的后向散射差异较小,但可以看出其谱形受色素吸收的影响很大,在幅值上,东海原甲藻略高于中肋骨条藻,在550 nm处分别为0.001 74,0.001 43 m2/mg(以藻类叶绿素a浓度归一化),后向散射概率分别为1.104%和0.723%。 相似文献
29.
长江口及其邻近海域CDOM光谱吸收特性分析 总被引:3,自引:0,他引:3
研究了长江口及其邻近海域有色可溶性有机物(CDOM)的光吸收特性,分析了CDOM浓度(吸收系数a(440))、光谱斜率(Sg)与盐度的关系。结果表明:长江口及其邻近海域CDOM的a(440)变化范围为0.21~0.85 m-1,平均值为0.44 m-1;Sg值的范围为0.013 3~0.016 7 nm-1,平均值为0.014 nm-1;a(440)的水平分布表现为长江口海区比外海区高,Sg的水平分布表现为长江口海区比外海区低,反映了长江口海区CDOM中的腐殖酸成分比外海区大。研究区内a(440)与盐度、Sg与盐度明显线性相关,表明CDOM在河口混合行为中呈保守行为,CDOM具有良好的保守性质。 相似文献
30.
卫星遥感业务系统海表温度误差控制方法 总被引:11,自引:1,他引:11
提高卫星遥感海表温度的反演精度是各种反演模型追求的目标,也是遥感系统业务化应用的关键.据相关文献报道,在晴空无云的条件下遥感海表温度的精度达到了0.5℃,但考虑到影响海表温度反演精度的多种因素,在遥感业务系统真正实现SST精度在1℃以内是非常困难的.在北太平洋渔场速报制作系统中,对遥感海表温度与船测温度误差统计显示均方根误差达到5.71℃,匹配点误差分布显示存在大量较大的负误差值,最大的为-17.2℃,遥感温度图也反映出存在片状温度低值区,这些区域很可能被错误地当作冷涡或冷锋区,严重干扰渔情分析,这些异常的温度误差很难通过海表温度反演模式和云检测技术来消除.采用一种标准海表温度参考图用于温度误差控制技术,可有效地检测温度反演异常值,将均方根值从5.71℃降低到1.75℃,如果采用2℃阈值控制计算均方根值,则海表温度精度达到0.785℃.该方法基本消除了遥感海表温度的低值现象,明显提高了遥感海表温度的精度,并已成功地应用于北太平洋渔区的海况速报产品制作中. 相似文献