首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   7篇
地质学   32篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1992年   2篇
排序方式: 共有36条查询结果,搜索用时 375 毫秒
31.
微生物岩土工程技术作为一种新兴的生态友好型岩土体改良加固技术,应用前景广阔。但限于理论水平和研究手段,该技术仍存在较多不足,难以实现高效固化,由此成为大规模现场应用的瓶颈。而提升固化效率的关键在于明确其作用原理和影响机制。文章梳理了微生物诱导碳酸钙沉积技术(MICP)的研究现状,系统归纳了固化原理和改良岩土体的物理力学特性,并分析得出固化效率主要受到反应物自身和外部环境两方面的影响。当前MICP技术已初步应用于土体固化、裂缝修复、防渗处理、污染修复及微生物水泥等领域,但由于矿化难以均匀、反应物不经济、微生物及脲酶活性期短且受环境干扰大、代谢产物附带毒性、现场应用性差,该技术目前主要限于实验室水平。作者分别提出了可能的突破与改进方向,并结合实验室成果指出豆粕进行菌体扩培和脲酶供给的碳源优势,以及将磷石膏作为现场钙源的环保性和经济性,以期为从事微生物岩土工程研究与技术开发的人员提供参考。  相似文献   
32.
页岩气作为非常规气,是一种重要能源。页岩的孔隙结构特征是衡量与评价页岩储层存储能力与可压裂性的重要参数。选取威远海相页岩(1#)、龙马溪海相页岩(2#)、瑶曲凝灰岩(4#)以及瑶曲陆相页岩(5#,6#),进行压汞实验、氮气吸附性实验以及核磁共振实验。利用分形理论,表征孔隙结构的非均质性,揭示分形维数和孔隙结构之间的关系。结果表明:孔隙在0.1~100 μm范围采用压汞实验,陆相页岩样品得到的分形维数要比海相页岩样品大;孔隙在2~200 nm范围采用氮气吸附实验,海相页岩的分形维数比陆相页岩大;相比之下,孔隙在10 nm~10 μm范围采用核磁共振实验得到的焦石坝海相页岩与陆相页岩的分形维数大小比较接近。尤其是本文统计的氮气吸附实验样本中,焦石坝海相页岩的分形维数最大,即焦石坝海相页岩的微孔结构最为发育,非均质性最强。因此分形维数可作为一种用于评价页岩孔隙非均质性与储存压裂效果的重要参数。  相似文献   
33.
基于压实度和弯沉值检测在某高速公路检验路基质量标准的应用实践,通过现场填筑试验,分析土石混填路基的压实固结机制并探讨不同施工因素(碾压次数、虚铺高度、颗粒级配、洒水遍数、振动方式)及其组合形式对压实质量的影响。研究结果表明:(1)随着碾压遍数逐渐增大,路基弯沉值先减小后平稳,压实度先增大后平稳;(2)先两遍静压再六遍高频率振动碾压,松铺厚度为30 cm,洒水两到三遍可以进一步改善压实效果;(3)颗粒破碎是影响路基压实度增大的因素之一,压实度增大是粗颗粒破碎成细颗粒,填充颗粒间孔隙,使粗细颗粒彼此咬合的结果。通过对试验结果的分析,提出了路基压实度与回弹模量的高斯指数关系,可作为高速公路快速安全施工的理论参考。  相似文献   
34.
护坡格构与坡面相互作用的研究   总被引:6,自引:0,他引:6  
边坡防护中的锚固格构梁多采用Winkler假设计算内力,设计者通常忽略了边坡岩土体和格构之间摩擦阻力的影响。摩擦阻力对于预应力而言较小,但确实存在,在未加预应力锚固格构梁中不应忽略。本文提出了一种简单有效的计算方法,并结合工程实例,使格构梁的设计得以优化。  相似文献   
35.
磷石膏是一种固体废弃材料,磷石膏的堆存浪费大量土地资源,严重污染土壤与水环境,并可能引发滑坡溃坝,因此进行磷石膏的资源化利用迫在眉睫。本文采用硅酸钠改良水泥基稳定磷石膏,开展路面基层试验研究。通过无侧限抗压强度试验、水稳定性试验、干缩试验及扫描电镜试验,研究了硅酸钠在不同掺量、掺入方式、养护龄期条件下改良水泥基稳定磷石膏的物理力学特性,揭示了硅酸钠促进水泥水化并产生水化硅酸钙,从而提高混合料强度的改良机理。试验结果表明,当溶于水的硅酸钠掺量为2%~4%时,可有效改良水泥基稳定磷石膏混合料的抗压强度、水稳定性能、失水率及干缩应变,并提出在路面基层施工后的4~5 d内,是有效控制路面基层失水与干缩的最佳时间,从而可避免因水分快速散失导致裂缝的产生。  相似文献   
36.
???Bursa????????????7????????й???????С????????????????????????????????????????????????????????????????Bursa????????????7????????????????????????????????????????????????????????  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号