首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  国内免费   18篇
测绘学   7篇
大气科学   30篇
地球物理   3篇
地质学   1篇
海洋学   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  1957年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
轨道误差对近实时GPS遥感水汽的影响研究   总被引:5,自引:3,他引:5  
利用GPS技术近实时探测水汽对于气象预报、气候研究具有重要的应用价值,而近实时探测需要使用GPS卫星的预报星历,预报星历的误差会直接影响到实时水汽探测的精度。利用从IGS资料处理中心下载的精密预报星历和最终星历,对2000年北京GPS水汽试验中的资料进行了解算,并结合探空资料计算的水汽进行了分析。结果表明:以探空为标准,使用精密预报星历计算的水汽总量均方根误差为0.31cm,最终星历为0.30cm,二者差别不大,为0.01cm,证明使用精密预报星历可以满足近实时探测水汽的要求。  相似文献   
12.
地基GPS技术已被公认为观测大气水汽的最具潜力手段,而天顶湿延迟(ZWD)是地基GPS解算高精度水汽的关键量。瑞士伯尔尼大学天文研究所开发的BERNESE软件在解算天顶湿延迟方面独树一帜。以香港地基GPS连续运行参考站数据为解算实例,详细介绍了BERNESE软件解算ZWD的基本步骤和相关设置,并对有气象观测文件、数据跨天、跨周和定点解算ZWD情况的特殊设置进行了研究,结果表明BERNESE软件完全胜任ZWD解算工作。  相似文献   
13.
随着北京全球定位系统(GPS)综合网的建设,以及地基GPS水汽反演技术的不断成熟,建立实时GPS数据下载和水汽自动处理系统,可提供气象科学研究所需的数据资料,为地基GPS气象学的业务化提供技术支持。本文介绍地基GPS反演水汽的基本原理及北京市GPS综合网的水汽含量自动处理系统,并利用该系统对2004年7月10日北京的一次强降水过程的大气水汽含量进行了反演。结果表明:在暴雨发生前3~4小时左右,GPS测量的气柱水汽含量在两小时内突增了6-7mm,很好地预示了其后的降水过程。可见该系统反演的全天候大气水汽场,可为准确监测和预报突发性强降水提供有意义的指标。  相似文献   
14.
利用香港Kings Park探空站(站号45004)2003—2009年探空资料回归了大气加权平均温度Tm、地面温度Ts、气压es和水汽压Ps的线性公式.通过比较分析发现Tm Ts单因素回归结果和Tm Ts、es、Ps多因素回归结果没有显著差异,但基于本地化探空数据的回归公式精度比Bevis公式高;增加样本数回归分析并不能显著提高公式精度,采用最近一月探空数据回归公式即可很好地由Ts拟合下年Tm,拟合均方根误差(F RMS)为1946 K;用2003年数据回归出的经验公式Tm=11329+05 863Ts去拟合2004—2009年的数据,拟合均方根误差〖JP2〗基本没有差异,因此某地Tm Ts经验公式一次回归可长期使用.通过对全国83个国际交换站2009年探空数据回归得出我国大陆地区最新Tm Ts经验公式为Tm=〖JP〗53244+0783Ts,该一般公式拟合均方根误差与本站数据回归剩余均方根误差(RRMS)相当,可代替本地公式广泛使用.  相似文献   
15.
中国大陆构造环境监测网络("陆态网络")项目建成了覆盖全国的由260个站组成的GPS综合应用网,中国气象局利用"陆态网络"的资料进行全国地基实时水汽总量的监测。针对"陆态网络"的GPS数据管理问题,基于B/S架构、开源WebGIS进行系统构建和网页发布,并采用Flex、JSP和Applet等技术搭建了地基导航卫星遥感水汽数据管理系统,实现了GPS站数据传输的实时监控、台站信息的统一管理等功能,用以满足当前对地基GPS站的监控和保障。  相似文献   
16.
GNSS遥感研究与应用进展和展望   总被引:2,自引:0,他引:2  
全球导航卫星系统遥感(GNSS remote sensing)属卫星导航应用与遥感的一个交叉学科范畴。GNSS系统除传统的导航、定位、授时等功能外,可免费提供全球覆盖、高时间分辨率的L波段(1—2 GHz)微波信号用于遥感探测。继GNSS折射信号被率先用于地震、大气水汽等的探测以来,利用GNSS反射信号进行海洋、陆表参数估算,近年来成为国际GNSS应用研究前沿热点。随着中国自主北斗导航系统的蓬勃发展,将会为GNSS遥感带来新的发展契机和空间。本文从GNSS遥感的两个重要学科分支,即GNSS折射信号遥感(GNSS refractometry)和GNSS反射信号遥感GNSS-R(GNSS Reflectometry),回顾在这一交叉学科领域近几十年的发展,并简要分析GNSS遥感发展面临的机遇与挑战。  相似文献   
17.
长江三角洲地区近30年非雾天能见度特征分析   总被引:3,自引:1,他引:3  
张恩红  朱彬  曹云昌  王红磊 《气象》2012,38(8):943-949
利用地面能见度观测数据和中分辨率成像光谱仪(简称M(ODIS)所提供的气溶胶光学厚度(Aerosol Optical Depth,AOD)资料,分析了中国长江三角洲地区近30年的能见度变化特征。结果表明,该地区1980—2009年能见度年均值为19.5±1.8km,其中最高值为21.9km,在1984年,最低值为16.1km在2007年。近30年能见度呈下降趋势,平均年递减率为-0.20±0.013km/a,近几年能见度趋于稳定。该地区能见度:夏季能见度最好,秋、春季次之,冬季最差;沿海地区能见度好于内陆地区,沿江(河)两岸能见度较差;沿江(河、海)地区能见度的下降速度大于其他地区,在浙江东南部沿海地区尤为明显。利用EOF方法分析长三角地区能见度,结果表明第一模态的特征向量均为正值,说明全区能见度均呈下降趋势。利用MO-DIS AOD数据分析区域性及长期能见度变化趋势与利用地面观测数据方法分析结论相一致。  相似文献   
18.
胡姮  曹云昌  梁宏 《气象》2019,45(4):511-521
为了探讨探空观测的水汽可降水量资料的可靠性,本文以GNSS/MET遥感的大气可降水量为参照标准,对广东汕头站2013年以及西藏那曲站2016年6月至2017年5月的两种可降水量观测结果进行对比分析和偏差订正。经过研究分析表明:两个站探空可降水量相比地基GNSS可降水量偏干,偏差分别为7. 4%和9. 8%。探空可降水量的偏差显示具有季节变化和日变化的特征,其中夏季偏差较明显,00时比12时明显。太阳辐射加热引起的地面气温的日变化和季节变化是造成偏差的重要原因。本文根据太阳辐射偏差订正经验公式,对两个站的探空可降水量进行偏差订正,订正后偏差明显减少。  相似文献   
19.
COSMIC掩星数据与L波段探空数据的对比分析   总被引:5,自引:1,他引:5  
王洪  曹云昌  肖稳安 《气象》2010,36(9):14-20
COSMIC(Constellation Observation System for Meteorology,Ionosphere and Climate)每天可以提供全球2000~3000条从40 km高空到近地面的大气温、压、湿的廓线资料,有效地弥补了常规探空资料在时间和空间上分辨率的不足。通过对2008年5月20日至2008年11月26日COSMIC资料与L波段探空秒数据进行比对,结果表明,在10 km高度以下,COSMIC反演的湿廓线资料与L波段探空数据偏差较小,温度偏差为-0.5℃,均方根误差为1.5℃;折射率偏差为1.4N,均方根误差为5.9N;气压偏差为2.0 hPa,均方根误差为4.7 hPa;水汽压偏差为0.1 hPa,均方根误差为1.1 hPa。COSMIC干廓线资料与L波段探空相比,在10~30 km高度内,温度偏差为-0.3℃,均方根误差为1.9℃;折射率偏差为0.4N,均方根误差为0.9N;气压偏差为1.4 hPa,均方根误差为2.6 hPa。表明COSMIC资料既具有较高的时空分辨率,又具有较好的精度,在数值模式中具有重要的潜在应用。  相似文献   
20.
为推动地面云观测自动化,利用2015 2016年全国范围内不同时段FY-2G卫星观测云覆盖率和总云量反演产品与同时段地面气象站人工观测总云量资料进行对比分析,评估卫星观测与地面人工观测的一致性和偏差。结果表明,FY-2G卫星观测云产品较地面观测偏低,总云量较云覆盖率偏低明显。定义晴天、少云、多云、阴天四种不同云量等级,进一步分析卫星数据,结果显示不同云量等级下云覆盖率与总云量与地面人工观测的一致性和偏差有所不同,晴天和少云状态下总云量产品一致性较好,阴天时云覆盖率一致性较好。从分布上分析发现西部和西南部观测偏差较大,且根据云量等级呈现不同的状态。因此在云观测自动化布局中,卫星观测不能完全替代地面云量观测。地面观测应在西部和西南部,以及天气状况较为复杂的区域加强观测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号