排序方式: 共有85条查询结果,搜索用时 0 毫秒
71.
利用国家气候中心全球大气海洋环流模式(NCC/IAP T63),考虑IPCC SRES A2(高排放)和A1B(中等排放)两种人类排放情景,对2030年前南水北调东线工程流域气候变化进行了预估。结果表明,由于人类活动,未来30a东线区域将变暖,尤以1月(冬季)东线北部地区变暖最明显,其中A2情景,2010年1月变暖约5℃,2020年1月变暖约7℃。7月(夏季)东线南部变暖最小,其中,2010年为0.2℃,2020年为0.9℃。值得注意的是,人类活动对未来30a东线区域降水的影响不明显,A2情景可能略有增加趋势,A1B情景可能略有减少趋势。 相似文献
72.
一个海气耦合模式模拟的云辐射过程 总被引:2,自引:0,他引:2
利用NCC/IAP T63海气耦合模式进行了20 a积分,详细分析了模式对云量及其辐射影响的模拟能力。结果表明,模式能够模拟出云量分布的基本特征,但同ISCCP卫星观测资料及ERA再分析资料相比还存在较大的差距,总体表现为模拟的云量偏小,尤其是海洋上部分地区出现了异常的低值区。通过对云量方案的改进,明显改善了两大洋东岸、夏半球副热带到中纬度海洋上空低云的模拟。但模式对热带印度洋到西太平洋地区云量的模拟仍然存在明显的偏差,这主要是由于模式对该地区强对流云模拟能力差,造成该地区高云模拟存在较大的误差。对辐射及其云辐射强迫的分析表明,模式对长波及其云辐射强迫的模拟要明显好于短波。短波辐射模拟的偏差主要是由于短波云辐射强迫模拟过小、耦合模式对积雪和海冰模拟较差、以及未考虑气溶胶的影响等原因共同引起的;而长波辐射模拟的差距主要是云量以及下垫面温度模拟不足造成的。相应于云量方案的改进,两大洋东岸、夏半球副热带到中纬度海洋上辐射(尤其是短波辐射)的模拟有了明显的改善,这也明显改进了这些地区的净辐射模拟。 相似文献
73.
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。 相似文献
74.
2012年3月5—9日,在美国夏威夷召开了CMIP5(第五阶段全球耦合模式对比计划)研讨会,会议由世界气候研究计划(WCRP)主持,近170位参与模式对比研究的专家受邀参加(其中中国代表13人),展示了160余篇报告和墙报,并且进行了广泛和深入的交流研讨。 相似文献
75.
利用近30年 (1961~1990年) 观测的温度 (包括平均、最高、最低)、降水、日较差、水汽的季和年平均资料, 对IPCC提供的5个全球海气耦合模式 (ECHAM4, HADCM2, GFDL, CGCM1, CSIRO) 在同样时段只考虑CO2等温室气体的影响和既有CO2等温室气体又有气溶胶的影响两种情形对东亚地区气候变化进行了检测。分析表明, 考虑温室气体与硫化物气溶胶作用, 冬季最低温度模拟效果较只考虑温室气体与观测更接近。结果还表明, 在两种情形下, 这些模式对东亚和中国地区的气候都有一定的模拟能力, 但同时各个模式的模拟场也都有各自的系统误差; 气溶胶的作用使东亚地区气温下降; 从相关系数计算表明, 模拟最好的变量是温度, 其次是水汽和降水, 最差的是日较差; 在空间的分布上, 各变量冬季的模拟效果最好; 考虑总体情况, ECHAM4与HADCM2两个模式对东亚和中国地区的气候模拟效果在5个模式中是最好的。 相似文献
76.
使用多种观测资料和43个参加耦合模式比较计划第五阶段(CMIP5)的全球气候模式模拟数据,评估分析了全球气候模式对中国地区1980-2005年降水特征的模拟能力。结果表明:多数CMIP5模式能够模拟出中国降水由西北向东南递增的分布特点,这与耦合模式比较计划第三阶段(CMIP3)的模式模拟结果类似,但华南地区降水模拟偏少,西部高原地区降水模拟偏多。模式能够较好地模拟出降水冬弱夏强的季节变化特征,但降水模拟系统性偏多。从EOF分析结果来看,多数CMIP5模式可以再现中国地区年平均降水的时空变化特征,集合平均的表现优于CMIP3。多模式集合在月、季、年时间尺度下模拟的平均值优于大部分单个模式的结果。CMIP5中6个中国模式的模拟能力与其他模式相当,其中FGOALS-g2、BCC-CSM1-1-m的模拟能力相对较好。 相似文献
77.
青藏高原及铁路沿线未来50年气候变化的模拟分析 总被引:8,自引:2,他引:8
利用由IPCC数据分发中心(DDC)提供的5个全球海气耦合模式(包括海冰与陆地生态系统)(CCCma,CCSR,CSIRO,GFDL,Hadley)气温及降水的模拟结果,对温室气体排放情景SRES-A2和B2影响下,青藏高原及铁路沿线未来50年气温和降水的变化进行了分析,包括整个青藏高原地区2011-2040年,2041-2070年的温度和降水空间分布特征以及21世纪前50年温度和降水变化的线性倾向等,结果表明:在人类活动引起的温室气体不断增加的情况下,21世纪青藏高原地区的温度将继续增加,在B2排放情景下,2011~2040年年平均温度增暖在高原主体达到1.6℃;20412070年,整个青藏高原的温度将上升2.8~3.0℃,A2排放情景下的升温幅度比B2排放情景下略高。对青藏铁路沿线地区各站A2和B2两种排放情景下,每10年平均的温度分析表明,在A2排放情景下,到2050年前后青藏铁路沿线各站的温度增加将是2010年时的2~3倍左右,A2时在2.56~2.96℃之间,B2时在2.37~2.65℃之间。对21世纪前50年整个青藏高原地区温度变化的线性倾向的空间分布的分析可知,在A2排放情景下,大部分都在1.5~2.5℃/50a,冬季大部分地区的变暖倾向都在2.0℃/50a以上,有些地区达到2.5℃/50a以上,夏季在2℃/50a左右;B2时青藏高原地区温度变化倾向的分布趋势与A2时基本一致,只是变化的数值偏低约0.5℃。对21世纪青藏高原地区降水变化的预估结果表明,与温度不同,在两种不同的排放情景下,降水的变化较为复杂。总体来说,21世纪前50年青藏高原大部分地区的降水为增加趋势。 相似文献
78.
79.
基于24个CMIP5全球耦合模式模拟结果,分析了中国区域年平均降水和ETCCDI强降水量(R95p)、极端强降水量(R99p)对增暖的响应.定量分析结果显示,CMIP5集合模拟的当代中国区域平均降水对增温的响应较观测偏弱,而极端降水的响应则偏强.对各子区域气温与平均降水、极端降水的关系均有一定的模拟能力,并且极端降水的模拟好于平均降水.RCP4.5和RCP8.5情景下,随着气温的升高,中国区域平均降水和极端降水均呈现一致增加的趋势,中国区域平均气温每升高1 ℃,平均降水增加的百分率分别为3.5%和2.4%,R95p增加百分率为11.9%和11.0%,R99p更加敏感,分别增加21.6%和22.4%.就各分区来看,当代的区域性差异较大,未来则普遍增强,并且区域性差异减小,在持续增暖背景下,中国及各分区极端降水对增暖的响应比平均降水更强,并且越强的极端降水敏感性越大.未来北方地区平均降水对增暖的响应比南方地区的要大,青藏高原和西南地区的R95p和R99p增加最显著,表明未来这些区域发生暴雨和洪涝的风险将增大. 相似文献
80.
2008年2月11~15日,由国际理论物理研究中心(ICTP:The Abdus Salam International Centre for Theoretical Physics)主办的“气溶胶与气候相互作用(Workshop on Aerosol—Climate Interactions:Mechanisms,Monitoring,and Impacts in Tropical Regions)”培训研讨班,在埃及东部海滨小城Hurghada举行。与会人员包括来自不同国家的40多名专家、 相似文献