首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   1篇
  国内免费   13篇
测绘学   1篇
大气科学   1篇
地球物理   4篇
地质学   147篇
海洋学   104篇
天文学   1篇
综合类   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2017年   1篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   23篇
  2009年   87篇
  2008年   75篇
  2007年   29篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
151.
在本项研究中,利用光度测定法测定Mersin含水层地下水的重金属含量,确定默辛地区地下水污染的主控因素。利用Maplnfo GIS软件开展空间分析和集成,来绘制盆地饮用水水质图。根据重金属的光度分析可推断得出,在某些地区地下水中铁、镍、锰、销和铜的浓度过高,是地下水不适于饮用的根本原因。同样,电导率(EC)专题图表明,盆地内大多数地区地下水的含盐最过高。地下水中多种重金属的浓度过高是由工业活动、石油管道泄漏以及较高的含盐度(由海水入侵导致)引起的。  相似文献   
152.
100多年以来,各领域的学者一直在研究着环境中的氟化物与人类健康的关系。大多数学者认为,摄入少量的氟有助于预防龋齿、强健骨骼,而长期摄入大剂量的氟会给健康带来不利的影响,包括氟斑牙、氟骨症,骨折机率增加;生育能力下降;尿结石机率增加;甲状腺机能下降;儿童智力下降。长期接触氟灰尘和气体,膀胱癌和呼吸系统疾病患病率增高。另据报道,摄入氟化钠杀虫剂和护牙用品会患急性氟中毒,严重者甚至死亡。自然环境中氟化物的分布非常不均一,主要是氟元素的地球化学特征所致。氟元素最先选择岩浆和热液释放地带富集,这就可以解释为什么正长岩、花岗类岩、火成岩、碱性火山岩和热液沉积岩的氟化物浓度一般比较高的原因。氟化物还常存在于沉积地层,该层包括来自原生岩的含氟化物矿物、富集氟化物的粘土、或者磷灰石。溶解的氟化物浓度一般受萤石(CaF2)的溶解度控制,因此,氟化物浓度高常常与软、碱性和钙含量不足的水体有关。尽管人们对氟化物的形成和其对健康的影响已经有很高的认识,但是,仍有很多氟化物与环境健康问题存在于第三世界国家,这些国家的居民几乎不能选择自己的饮用水和食物。即便是在发达国家,如果忽略了饮用水源之外的水源,那么,居民摄入的氟化物的含量也超过了推荐的剂量。  相似文献   
153.
在阿尔及利亚南部地区,氟斑牙病作为一种流行病在人群中的患病范围悄然扩大。本文研究的目的是确定水、椰枣和茶等日常摄入的食物的氟离子含量。结果表明,35%的饮水井中氟离子浓度超标(〉1.5mg/1)。研究区东部水中含氟量很高且地方性氟斑牙病情分布广。椰枣,茶和水为氟的主要来源之一,其一般分配比例依次为10%,20%以及超过70%。通过食用这三种食物,成年人日常摄入氟的量超过了建议的安全用量即每天0.05-0.07mg/kg。  相似文献   
154.
根据工程地质勘查结果和人类活动污水与自然环境相互作用过程的计算机模拟结果,对矾土联合工厂矿泥储存池地区地下水污染的大体规模和等级进行了评价,并且确定了地下水成分的变化规律。通过对所获取数据的总结研究制定了预先建立边界防渗透幕的自然保护综合措施;用排水井抽取由防渗透幕拦截的水;碳化矿泥水以降低pH值和把有害杂质转移到难溶化合物中,为了降低矿泥储存池地区渗透特性,也使用了淤填方法和储存矿泥充满的专门的方案。  相似文献   
155.
1原理 二氧化碳和甲烷的不同吸附特征可以用于封存二氧化碳并且提高不可开采煤层中甲烷气体回采率。在5-8个大气压力下,一吨煤能吸收二氧化碳气体30-35立方米。使用适当的压力,每摩尔甲烷可以置换二氧化碳气体1.5到5或6摩尔。利用上述提到的文献资料计算出二氧化碳的封存量。  相似文献   
156.
包裹体是探究矿物结晶生长过程及其地球化学环境的重要探针,是反演寄主矿物形成机制及形成环境的有效工具。本文采用显微激光拉曼光谱、电子探针和LA-ICP-MS技术对来自湖南沅水流域的24颗宝石级金刚石的包裹体进行了原位分析。结果显示,湖南砂矿金刚石中橄榄岩型和榴辉岩型包裹体比例接近,橄榄岩型和榴辉岩型包裹体可在同一颗金刚石中"共存";湖南金刚石形成时地幔的温度和压力分别为1109~1237℃和4.05~5.83 GPa,相应的形成深度大致为133~192 km;包裹体成分及组合特征显示,扬子克拉通金刚石的形成环境与华北克拉通金刚石有显著差异,前者的形成与榴辉岩的关系更为密切,暗示有古老的地壳物质参与了金刚石的形成过程。  相似文献   
157.
地下水质监测在地下水保护和质量守恒方面起着重要作用。在捷克斯洛伐克开展的国家、区域和特殊场地监测项目主要涉及地下水质和区域污染扩散问题相关背景资料的收集。安装有数据自动收集系统的试验监测站,优化了监测方法、监测网的设计和采样技术。捷克斯洛伐克的地下水质监测为密集耕作区相关决策与政策的制定提供了依据。对捷克斯洛伐克多个地区的浅层脆弱性含水层的时空变化进行了评价,从而为土地利用综合规划和地下水保护管理提供依据。  相似文献   
158.
地下水样品采自印度Andhra Pradesh,Anantapur地区。该地区主要地层为太古代半岛片麻岩。本文分析了该水样的F^-和其他化学参数。结果表明,该区氟源主要来自围岩,这个地区的F^-紧紧地吸附在包含粘土的矿物质土壤中。F^-与成岩的钠之间很强的正相关性反映出了风化侵蚀作用。正是这种相关性导致了F^-拘滤出,而半干旱气候和强灌溉也是F^-产生的原因。研究区循环水的碱性环境使土壤更容易滤出F^-,也导致地下水中的F^-含量高。高蒸发率引起的水在含水层中的滞留时间长和风化带水力传导系数低,将促使含氟矿物的溶解,这是另一个地下水中氟含量进一步增加的因素。提出了提高地下水质量的建议,从而改善居民的健康状况。  相似文献   
159.
对已经发表的数十篇关于澳大利亚金刚石的英文文献进行了梳理,从其金刚石的品质、颜色类型、形态及表面特征、生长结构及微量元素、包裹体、C同位素等方面探索了澳大利亚不同区域金刚石可能存在的产地来源特征.研究显示,澳大利亚金刚石可分为岩石圈地幔成因、超深地幔成因和俯冲环境来源等成因类型;大部分澳大利亚金刚石都因经历过强烈的晶格变形或熔蚀作用而晶体圆化,但不同产地来源的金刚石在颜色组合、橄榄岩型和榴辉岩型金刚石比例、C同位素组成特征等方面存在一定差异.上述结果表明,总体上,澳大利亚不同区域金刚石具有一定的产地来源个性,但无法简单确认澳大利亚金刚石“整体”的产地来源特征;只有结合成因来源进行分析,才能够较深入地理解不同区域金刚石的特征组合及其意义,从而为理解其产地来源的特殊性提供帮助.  相似文献   
160.
犹他州地质调查局对犹他州西南部Escalante山谷内的5个地裂缝进行了勘查。2005年1月8—12日,在Escalante山谷突降一场强冬季暴风雪(可引起洪水)后,Escalant山谷内出现了地裂缝。洪水的渗透和层状冲刷(或片冲作用)扩大了地裂缝的范围。这些地裂缝长约100米(330英尺)至400米(1300公尺),而且在Beryl Junction地区中部形成了一个不连续的长9千米的裂缝带(一般向北部延伸)。在某些位置,洪水侵蚀了裂缝并形成宽3米、深2米的冲沟。据当地居民描述,在洪水泛滥期间,洪水源源不断地流入地裂缝(持续时间1天或几天),并在地裂缝上部形成旋涡。布格重力数据显示,Escalante山谷是一个沉积物充填的盆地(以下简称充填盆地),其最深位置正好位于Beryl Junetion东部。Escalante山谷也是一个农业耕作区,自20世纪20年代起开始从充填盆地含水层抽取地下水。监测结果表明,自从20世纪40年代以来,Escalante山谷的地下水位开始稳定下降。近年来,由于干旱,Escalante山谷地下水位的下降速率不断增加。Beryl Junction南部地区地下水位的下降速率最大。调查结果显示,地裂缝的物理特性类似于在其他西部地区(由地下水开采和水位下降引起)形成的裂缝。这些地裂缝长与宽的比值(长宽比)较大,且大多数地裂缝是线性结构,可以在多种地层中出现并能够延伸相当大的距离。基于流入地裂缝的洪水总量,地裂缝的深度能够延伸至更大范围(甚至达到地下水位)。沉积层(含粘土)范围内的能够产生不同裂纹特征的地裂缝(例如干缩裂缝、水压实或地表断层)的其他可能的成因是震级较大的地震(大于6.5级)。此外,对Escalante山谷地面进行的高分辨率GPS勘查结果显示,在1941年-1972年期间,Beryl Junction中部地区的地面局部下沉4英尺(1.2米),在该地区(Beryl Junction中部地区)地下水位的下降速率最大。基于现有的数据得出,Escalante山谷地裂缝形成的域合理的解释是地下水开采。地下水开采能够引起地下水位明显下降、Escalante山谷含水层细粒单元永久的压实,以及Beryl Junction附近地区的地面沉降。经推断得出,Escalante山谷内的地裂缝是Esealante山谷西部不同含水层压实的差异引起的Escalante山谷内含水层(存在水平张力)的表面下沉。为了更好地了解其他地裂缝的成因和未来可能的范围,建议进行以下研究:(1)干涉雷达法确定Escalante山谷的地面沉降;(2)对Escalante山谷进行更详细地地质和水文地质勘查,来确定其与地裂缝形成之间的关系:(3)对其他地裂缝进行勘查和(4)对山谷内水井套管和井口变形进行全面分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号