首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   17篇
  国内免费   18篇
测绘学   1篇
地球物理   2篇
地质学   86篇
综合类   5篇
自然地理   3篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   6篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1995年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
41.
孔隙承压含水系统中粘性土释水及其在资源评价中的意义   总被引:2,自引:1,他引:2  
在我国分布着许多由松散沉积物组成的孔隙承压含水系统,通常包含大量的粘性土层。开采这些孔隙含水系统时,往往发生粘性土释水,并由此而产生地面沉降。本文根据国内地面沉降的观测资料,探讨了开采孔隙承压含水系统过程中,粘性土的释水机制和规律及其在地下水资源评价中的意义。  相似文献   
42.
新疆孔雀河灌区面临地下水超采问题,科学认识区域地下水流系统的发育条件和演变特征,是优化地下水资源开发利用方式的基础.通过构建第四系含水层三维地下水稳定流模型,利用流线追踪技术,模拟识别了孔雀河流域19702020年期间地下水流系统的变化特征.结果 表明,不同补给区和排泄区通过流线进行组合,在孔雀河周边形成了交错分布的地下水流系统,其空间分布格局随灌区地下水开采规模而变化.在20世纪70年代的拟天然状态,灌区主要发育自北向南的地下水流系统,其空间分布格局取决于水文地质参数和排泄要素,并可能存在1~4个以孔雀河为排泄带的流动系统.在有强烈地下水开采的现状条件下,灌区地下水流系统转变为从四周流向漏斗中心,截断了从孔雀河上游渗漏到中下游河道排泄的水流系统.近50 a来,以潜水蒸发为排泄方式的地下水流系统投影面积萎缩了29%,而以地下水开采为排泄方式的地下水流系统投影面积从零增加到研究区面积的40%.潜水蒸发对自然生态系统具有重要的支撑作用,灌区地下水开采应有所控制以保障潜水蒸发型地下水流系统的发育条件.  相似文献   
43.
由地下水补给、径流和排泄过程构成的地下水循环运动,是水文循环的重要组成部分,也是水文地质学的基本研究对象.地下水循环在空间上表现为不同结构单元的组合,存在以含水层特性为依据的介质结构和以渗流场为依据的动力结构2种划分方法.地下水流系统是动力结构意义上的地下水循环单元.近10年来,区域地下水流系统理论取得了显著进展,更加全面深入地揭示了地下水循环结构的动力学特性.通过对河间地块地下水流系统的研究,发现潜水面最高点并非地下水分水岭的准确位置.在盆地尺度上,系统研究了沟谷地貌、降水入渗强度、渗透性随埋深变化和盆地厚度等因素对潜水面波形与地下水循环动力结构的影响,初步发现了动力结构的周期性或趋势性演化特征.通过大规模流线路径的精细识别或驻留时间的统计分析,提出了三维地下水循环单元的划分方法.在水文地质效应方面,发现地下水循环的动力结构对地下水年龄的分布有重要影响.地下水循环的动力结构反映了不同补给区和排泄区之间的水力联系,在盆地尺度地球化学过程、流域尺度生态水文过程中发挥着关键作用,未来的研究重点是三维地下水循环的动力特性和演变规律.  相似文献   
44.
地下水补给是影响区域地下水资源的关键因素,准确评价地下水净补给量对地下水资源的合理开发利用和区域水文循环过程的研究具有基础性意义。通常情况下,在站点尺度可以使用蒸渗仪等设备直接监测地下水补给,而在区域尺度获取地下水补给则难度较大,因此亟待构建一种简便量化区域尺度地下水补给量的方法。本文提出一种基于遥感数据校正来估算区域尺度多年地下水补给量的方法,并在黄河中游内蒙古鄂尔多斯盆地新街台格庙矿区进行试点应用研究。通过对多源降水数据的筛选和蒸发遥感数据的校正,评价台格庙矿区地下水多年净补给量,并基于实测数据的Hydrus-1D数值模拟验证评价方法的有效性。研究结果显示,TPDC来源的降水量数据集更适用于反映研究区降水量的空间分布;MOD16遥感数据低估了矿区实际蒸散量,实际蒸散量是MOD16数据的1.41倍;矿区多年平均净补给量变化范围在-65.70~73.93 mm之间,超过80%的区域净补给量在-30~30 mm之间。新方法估算的地下水净补给量与基于实测数据的土壤水流数值模拟结果接近,表明该方法在缺乏地表产流或地表径流观测资料翔实的地区具有较强的实际应用价值。  相似文献   
45.
基于熵权与GIS耦合的DRASTIC地下水脆弱性模糊优选评价   总被引:3,自引:1,他引:2  
张保祥  万力  余成  孟凡海 《现代地质》2009,23(1):150-156
地下水脆弱性评价与编图是保护地下水环境工作的基础,DRASTIC模型是目前国际上最普遍应用的地下水脆弱性评价方法。在利用GIS进行地下水脆弱性评价的基础上,引进基于熵权的模糊优选评价方法,构建了基于熵权与GIS耦合的DRASTIC地下水脆弱性模糊优选评价模型。将该模型应用于黄水河流域,计算出了各评价参数的熵权和各叠加分区基于熵权的隶属度,据此将地下水脆弱性划分为高、中、低3个等级。结果表明,评价过程中避免了人为因素的干扰,更能真实地反映客观情况,为地下水脆弱性的评价提供新的思路和方法。  相似文献   
46.
随着沉积学研究向定量化、过程化、体系化发展,沉积正演日益受到重视。首先阐述了目前沉积正演的主要输入和输出数据,梳理了输入参数的确立方法。随后综述了沉积正演分类的方法,分类原则包括模拟原理、模拟过程数量、模拟结果类型、模拟维度、模拟尺度、忠实数据程度、是否包含源-汇系统的源区等。然后介绍了不同碎屑岩系沉积体系的沉积正演方法,包括山坡地形、河流和深水水道、三角洲、朵体和滑坡。通过介绍各个体系的某一典型模拟程序,说明这一体系需要重点模拟的沉积特征及其对应的模拟原理,并尽量涵盖多种模拟方法,扩宽对于沉积正演的认识。最后对沉积正演的发展进行了展望,认为其将向三维可视化、多过程融合、多学科融合方向发展,并建议加强计算机、数学、力学、地学的复合人才培养;加强沉积正演假想实验研究来研究沉积理论;尝试多种模拟方法;以及由应用为主转向以研发为主。  相似文献   
47.
在区域尺度上,地下水流的路径存在跨越地表分水岭的可能性,从而形成跨流域地下水循环,影响流域之间的水文关系和溶质输送过程。跨流域地下水循环的研究在国际上尚处于起步阶段,方兴未艾,目前已经取得的进展是一个值得关注的问题。对近20年来国内外跨流域地下水循环的研究文献进行了系统的跟踪分析,从形成机理、识别方法和影响评估3个角度总结现有的研究进展。在水动力学形成机理方面,已经从理论上确定了地表分水岭、潜水面最高点和地下水流系统分水点之间的偏离特征,为划分河流之间的多种跨流域地下水循环路径提供了依据。在跨流域地下水循环的识别方面,一系列实际流域的案例提供了可以借鉴的方法,包括水均衡法、流域水文模型和水文地球化学端元混合模型等,证实了跨流域地下水循环的存在性,甚至评估出其循环通量,深化了流域水量平衡关系的认识。研究表明流域地理位置、形态尺寸、气候背景和地质构造等条件都会影响跨流域地下水循环的发生及通量。在影响评价方面,初步发现跨流域地下水循环对水文要素的气候敏感性、Budyko模式状态参数及碳源碳汇形成有重要影响,忽略其作用可能产生错误的认识。目前,科学界对跨流域地下水循环的动力学过程及其物质输送效...  相似文献   
48.
鄂尔多斯北部盆地古流体动力场的演化特征   总被引:2,自引:0,他引:2  
以鄂尔多斯北部盆地为例,针对古流体动力场的演化问题,应用三维数值模拟技术,恢复了上古生界不同时期地层厚度和地质、水文地质条件;推导了考虑多个要素的地下流体三维数学模型,并依据不同时期古流体动力场特征,初步分析了上古生界油气的运移聚集规律。结果表明,在鄂尔多斯北部盆地,运用三维数值模拟方法能够比较完善地描述古流体动力场的特征和比较准确地指明油气运移和聚集区带,为天然气勘探靶区的确定提供比较可靠的依据。   相似文献   
49.
岩体渗透结构与矿坑涌水强度关系   总被引:1,自引:0,他引:1  
非均质和结构性是岩体的渗透特征。渗透结构可以分为壳状渗透结构、脉状渗透结构和层状渗透结构三种基本类型 :壳状渗透结构条件下矿坑涌水强度随深度衰减 ;脉状渗透结构使得矿坑涌水强度随深度衰减幅度小 ;层状渗透结构对矿坑涌水强度的控制作用取决于岩层的组合效果。矿区含水岩体的渗透特征由三种基本渗透结构复合而成。复合的渗透结构使矿区出现多条突水强度随深度衰减曲线 ,多个突水强度峰值  相似文献   
50.
万力  刘登  徐方  牛继辉 《吉林地质》2009,28(3):77-82
采用高精度磁测的方法,通过矿区基底构造、断裂、盖层及侵入体地球物理特征分析,结合已有的地质分析成果,提出了该地区矿床就位规律的新认识,对深部成矿预测有一定的指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号