首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6491篇
  免费   240篇
  国内免费   24篇
测绘学   225篇
大气科学   446篇
地球物理   2460篇
地质学   2152篇
海洋学   242篇
天文学   998篇
综合类   31篇
自然地理   201篇
  2022年   51篇
  2021年   116篇
  2020年   111篇
  2019年   85篇
  2018年   269篇
  2017年   260篇
  2016年   395篇
  2015年   274篇
  2014年   305篇
  2013年   403篇
  2012年   330篇
  2011年   280篇
  2010年   276篇
  2009年   288篇
  2008年   226篇
  2007年   173篇
  2006年   166篇
  2005年   128篇
  2004年   132篇
  2003年   131篇
  2002年   111篇
  2001年   108篇
  2000年   101篇
  1999年   66篇
  1998年   98篇
  1997年   81篇
  1996年   69篇
  1995年   88篇
  1994年   96篇
  1993年   76篇
  1992年   61篇
  1991年   52篇
  1990年   67篇
  1989年   56篇
  1988年   49篇
  1987年   48篇
  1986年   52篇
  1985年   53篇
  1984年   47篇
  1983年   59篇
  1982年   59篇
  1981年   51篇
  1980年   54篇
  1979年   49篇
  1978年   60篇
  1977年   50篇
  1976年   37篇
  1975年   44篇
  1973年   49篇
  1971年   50篇
排序方式: 共有6755条查询结果,搜索用时 15 毫秒
991.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   
992.
In current operational numerical weather prediction models, the effect of shallow convection is parametrized. The grey zone of shallow convection is found between the horizontal resolutions of mesoscale numerical models (2–3 km) and large-eddy simulations (10–100 m or finer). At these horizontal scales the shallow convection is to some extent explicitly resolved by the model. The shallow-convection parametrization is still needed, but has to be regulated according to the model horizontal resolution. Here the behaviour of the non-hydrostatic mesoscale numerical weather prediction model Application of Research to Operations at Mesoscale is examined in the grey zone and a new scale-adaptive surface closure of its shallow-convection parametrization, dependent on horizontal resolution, is defined based on large-eddy simulation. The new closure is tested on a series of numerical experiments and validated on a 15-day-long real case period. Its impact on the development of deep convection is examined in detail. The idealized simulations show promising results, as the mean profiles of the subgrid and resolved turbulence change in the desired way. Based on the real case tests our modification has a low impact on model performance, but is part of a set of upgrades of the current parametrization that is aimed to treat the shallow convection grey zone.  相似文献   
993.
In-situ Formation of Light-Absorbing Organic Matter in Cloud Water   总被引:1,自引:0,他引:1  
Current climate models seem to underestimate the flux of solar energy absorbed by the global troposphere. All of these models are constrained with the assumption that cloud droplets consist of pure water. Here we demonstrate in a simple laboratory experiment that aromatic hydroxy-acids which are found in continental fine aerosol can react with hydroxyl radicals under typical conditions prevalent in cloud water influenced by biomass burning. The reactions yield colored organic species which do absorb solar radiation. We also suggest that the products of such reactions may be humic-like substances whose presence in continental aerosol has been confirmed but their source mechanisms are still much sought after. We also attempt to give a first order estimate of the enhancement of water absorption at a visible wavelength under atmospheric conditions.  相似文献   
994.
995.
996.
We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.  相似文献   
997.
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.  相似文献   
998.
It was recently reported a regional warming in the intra-Americas region where sea surface temperature exhibited increases exceeding 0.15 °C/decade and an accelerated air temperature rise that could impact building energy demands per capita (EDC). Reanalysis data is used herein to quantify the impacts of these warming trends on EDC. Results of the analysis depict a Southern Greater Antilles and inland South America with a positive annual EDC rate of 1–5 kWh per year. The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and 4.5 scenarios were selected to analyze energy demand changes in the twenty-first century. A multi-model ensemble forecasts an EDC increase of 9.6 and 23 kWh/month in the RCP2.6 and RCP4.5 at the end of the twenty-first century, which may increase average building cooling loads in the region by 7.57 GW (RCP2.6) and 8.15 GW (RCP4.5), respectively. Furthermore, 4 of 9 (RCP2.6) and 7 of 9 (RCP4.5) of the major countries in this region have EDCs ranging between 1887 and 2252 kWh/year at the end of this century. Therefore, increased energy production and improved energy infrastructure will be required to maintain ideal indoor building conditions at the end of the twenty-first century in these tropical coastal regions as consequence of a warmer climate.  相似文献   
999.
In 2015, Central Europe experienced an unusually warm summer season. For a great majority of climatic stations around Slovakia, it had been the warmest summer ever recorded over their entire instrumental observation period. In this study, we investigate the mortality effects of hot days’ sequences during that particular summer on the Slovak population. In consideration of the range of available mortality data, the position of 2015 is analysed within the years 1996–2015. Over the given 20-year period, the summer heat spells of 2015 were by far the most severe from a meteorological point of view, and clearly the deadliest with the total of almost 540 excess deaths. In terms of impacts, an extraordinary 10-day August heat spell was especially remarkable. The massive lethal effects of heat would have likely been even more serious under normal circumstances, since the number of premature deaths appeared to be partially reduced due to a non-standard mortality pattern in the first quarter of the year. The heat spells of the extremely warm summer of 2015 in Slovakia are notable not just for their short-term response in mortality. It appears that in a combination with the preceding strong influenza season, they subsequently affected mortality conditions in the country in the following months up until the end of the year. The impacts described above were rather different for selected population subgroups (men and women, the elderly). Both separately and as a part of the annual mortality cycle, the 2015 summer heat spells may represent a particularly valuable source of information for public health.  相似文献   
1000.
Summary ¶This study examines the spatial and quantitative influence of urban factors on the surface air temperature field of the medium-sized of Szeged, Hungary, using mobile measurements under different weather conditions in the periods of March 1999–February 2000 and April–October 2002. Efforts have been concentrated on the development of the urban heat island (UHI) in its peak development during the diurnal cycle. Tasks included: (1) determination of spatial distribution of mean maximum UHI intensity and some urban surface parameters (built-up and water surface ratios, sky view factor, building height) using the standard Kriging procedure, as well as (2) development of a statistical model in the so-called heating and non-heating seasons using the above mentioned parameters and their areal extensions. In both seasons the spatial distribution of the mean maximum UHI intensity fields had a concentric shape with some local irregularities. The intensity reaches more than 2.1°C (heating season) and 3.1°C (non-heating season) in the centre of the city. For both seasons statistical model equations were determined by means of stepwise multiple linear regression analysis. As the measured and calculated mean maximum UHI intensity patterns show, there is a clear connection between the spatial distribution of the urban thermal excess and the examined land-use parameters, so these parameters play an important role in the evolution of the strong UHI intensity field. From the above mentioned parameters the sky-view factor and the building height were the most determining factors which are in line with the urban surface energy balance. Therefore in the future, using our model it will be possible to predict mean maximum UHI intensity in other cities, which have land-use features similar to Szeged.Received September 26, 2002; revised February 25, 2003; accepted March 22, 2003 Published online July 30, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号