首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26641篇
  免费   289篇
  国内免费   939篇
测绘学   1499篇
大气科学   2131篇
地球物理   5334篇
地质学   12284篇
海洋学   1153篇
天文学   1934篇
综合类   2170篇
自然地理   1364篇
  2021年   26篇
  2020年   58篇
  2019年   39篇
  2018年   4807篇
  2017年   4075篇
  2016年   2671篇
  2015年   317篇
  2014年   176篇
  2013年   166篇
  2012年   1070篇
  2011年   2832篇
  2010年   2107篇
  2009年   2415篇
  2008年   1984篇
  2007年   2417篇
  2006年   131篇
  2005年   247篇
  2004年   445篇
  2003年   465篇
  2002年   286篇
  2001年   101篇
  2000年   88篇
  1999年   56篇
  1998年   55篇
  1997年   37篇
  1996年   30篇
  1995年   27篇
  1994年   27篇
  1993年   17篇
  1992年   24篇
  1991年   17篇
  1990年   24篇
  1989年   30篇
  1988年   26篇
  1987年   27篇
  1986年   35篇
  1985年   30篇
  1984年   28篇
  1983年   35篇
  1982年   33篇
  1981年   51篇
  1980年   40篇
  1979年   26篇
  1978年   19篇
  1977年   20篇
  1976年   30篇
  1975年   22篇
  1973年   24篇
  1972年   16篇
  1971年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
83.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
84.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
85.
Wind and waves are major forces affecting the geomorphology and biota in coastal areas. We present a generally applicable method for measuring and calculating fetch length, fetch direction and wave exposure. Fetch length and direction, measured by geographic information system-based methods, are used along with wind direction and wind speed data to estimate wave height and period by applying forecasting curves. The apparent power of waves approaching the shore, used as a proxy for wave exposure, is then calculated by a linear wave model. We demonstrate our method by calculating fetch lengths and wave exposure indices for five areas with varying exposure levels and types of meteorological conditions in the Finnish Archipelago Sea, situated in the northern Baltic Sea. This method is a rapid and accurate means of estimating exposure, and is especially applicable in areas with geomorphologically varying and complicated shorelines. We expect that our method will be useful in several fields, such as basic biogeographical and biodiversity research, as well as coastal land-use planning and management.  相似文献   
86.
Four drift accumulations have been identified on the continental margin of northern Norway; the Lofoten Drift, the Vesterålen Drift, the Nyk Drift and the Sklinnadjupet Drift. Based on seismic character these drifts were found to belong to two main groups; (1) mounded, elongated, upslope accretion drifts (Lofoten Drift, Vesterålen Drift and Nyk Drift), and (2) infilling drifts (Sklinnadjupet Drift). The drifts are located on the continental slope. Mainly surface and intermediate water circulation, contrary to many North Atlantic and Antarctic drifts that are related to bottom water circulation, and sediment availability have controlled their growth. Sediments were derived both from winnowing of the shelf and upper slope and from ice sheets when present on the shelf. The main source area was the Vøring margin. This explains the high maximum average sedimentation rate of the nearby Nyk (1.2 m/ka) and Sklinnadjupet (0.5 m/ka) Drifts compared with the distal Lofoten (0.036 m/ka) and Vesterålen (0.060 m/ka) Drifts. The high sedimentation rate of the Nyk Drift, deposited during the period between the late Saalian and the late Weichselian is of the same order of magnitude as previously reported for glacigenic slope sediments deposited during glacial maximum periods only. The Sklinnadjupet Drift is infilling a paleo-slide scar. The development of the infilling drift was possible due to the available accommodation space, a slide scar acting as a sediment trap. Based on the formation of diapirs originating from the Sklinnadjupet Drift sediments we infer these sediments to have a muddy composition with relatively high water content and low density, more easily liquefied and mobilised compared with the glacigenic diamictons.  相似文献   
87.
The Magellan seamounts began forming as large submarine shield volcanoes south of the equator during the Cretaceous. These volcanoes formed as a cluster on the small Pacific plate in a period when tectonic stress was absent. Thermal subsidence of the seafloor led to sinking of these volcanoes and the formation of guyots as the seamounts crossed the equatorial South Pacific (10–0°S) sequentially and ocean surface temperatures became too high for calcareous organisms to survive. Guyot formation was completed between about 59 and 45 Ma and the guyots became phosphatized at about 39–34 and 27–21 Ma. Ferromanganese crusts began formation as proto-crusts on the seamounts and guyots of the Magellan Seamount cluster towards the end of the Cretaceous up to 55 Ma after the formation of the seamounts themselves. The chemical composition of these crusts evolved over time in a series of steps in response to changes in global climate and ocean circulation. The great thickness of these crusts (up to 15–20 cm) reflects their very long period of growth. The high Co contents of the outer parts of the crusts are a consequence of the increasing deep circulation of the ocean and the resulting deepening of the oxygen minimum zone with time. Growth of the Co-rich Mn crusts in the Magellan Seamount cluster can be considered to be the culmination of a long journey through time.  相似文献   
88.
A method to extract geostrophic current in the daily mean HF radar data in the Kuroshio upstream region is established by comparison with geostrophic velocity determined from the along-track altimetry data. The estimated Ekman current in the HF velocity is 1.2% (1.5%) and 48° (38°)-clockwise rotated with respect to the daily mean wind in (outside) the Kuroshio. Furthermore, additional temporal smoothing is found necessary to remove residual ageostrophic currents such as the inertial oscillation. After removal of the ageostrophic components, the HF geostrophic velocity agrees well with that from the altimetry data with rms difference 0.14 (0.12) m/s in (outside) the Kuroshio.  相似文献   
89.
90.
Background signal of the scintillation detector routinely used for atmospheric Kr-85 counting follows fluctuations, and their connection with cosmic ray variations is searched for. A strong correlation between the 27-day moving average of sunspot numbers and the background is obtained from the 1988 data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号