首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47808篇
  免费   698篇
  国内免费   402篇
测绘学   1195篇
大气科学   3318篇
地球物理   9828篇
地质学   16935篇
海洋学   3895篇
天文学   11285篇
综合类   178篇
自然地理   2274篇
  2021年   480篇
  2020年   508篇
  2019年   491篇
  2018年   1174篇
  2017年   1068篇
  2016年   1359篇
  2015年   792篇
  2014年   1352篇
  2013年   2435篇
  2012年   1483篇
  2011年   1885篇
  2010年   1739篇
  2009年   2352篇
  2008年   1944篇
  2007年   1924篇
  2006年   1775篇
  2005年   1350篇
  2004年   1327篇
  2003年   1237篇
  2002年   1176篇
  2001年   1076篇
  2000年   1017篇
  1999年   890篇
  1998年   922篇
  1997年   869篇
  1996年   744篇
  1995年   749篇
  1994年   676篇
  1993年   572篇
  1992年   528篇
  1991年   536篇
  1990年   609篇
  1989年   526篇
  1988年   479篇
  1987年   617篇
  1986年   510篇
  1985年   642篇
  1984年   727篇
  1983年   698篇
  1982年   609篇
  1981年   628篇
  1980年   538篇
  1979年   500篇
  1978年   509篇
  1977年   461篇
  1976年   444篇
  1975年   454篇
  1974年   429篇
  1973年   469篇
  1972年   280篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The detailed examination of meteorites and interplanetary dust particles provides an opportunity to infer the origin of the organic matter found in primitive Solar System materials. If this organic matter were produced by aqueous alteration of elemental (graphitic or amorphous) carbon on an asteroid, then we would expect to see the organic matter occurring preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. On the other hand, if the organic matter were produced either during the nebula phase of Solar System evolution or in the interstellar medium, we might expect this organic matter to be incorporated into the dust as it formed. In that case pre-biotic organic matter would be present in both the anhydrous and the hydrated interplanetary materials. We have performed carbon X-ray absorption near-edge structure spectroscopy and infrared spectroscopy on primitive anhydrous and hydrated interplanetary dust particles (IDPs) collected by NASA from the Earth's stratosphere. We find that organic matter is present in similar types and abundances in both the anhydrous and the hydrated IDPs, and, in the anhydrous IDPs some of this organic matter is the “glue” that holds grains together. These measurements provide the first direct, experimental evidence from the comparison of extraterrestrial samples that the bulk of the pre-biotic organic matter occurs in similar types and abundances in both hydrated and anhydrous samples. This indicates that the bulk of the pre-biotic organic matter in the Solar System did not form by aqueous processing, but, instead, had already formed at the time that primitive, anhydrous dust was being assembled. Thus, the bulk of the pre-biotic organic matter in the Solar System was formed by non-aqueous processing, occurring in either the Solar nebula or in an interstellar environment. Aqueous processing on asteroids may have altered this pre-existing organic matter, but such processing did not affect in any substantial way the C=O content of the organic matter, the aliphatic C-H abundance, or the mean aliphatic chain length.  相似文献   
942.
Structural analysis of low-grade rocks highlights the allochthonous character of Mesozoic schists in southeastern Rhodope, Bulgaria. The deformation can be related to the Late Jurassic–Early Cretaceous thrusting and Tertiary detachment faulting. Petrologic and geochemical data show a volcanic arc origin of the greenschists and basaltic rocks. These results are interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata–Maliac Ocean under the supra-subduction back-arc Vardar ocean/island arc system. This arc-trench system collided with the Rhodope in Late Jurassic times. To cite this article: N.G. Bonev, G.M. Stampfli, C. R. Geoscience 335 (2003).  相似文献   
943.
G. P. Glasby  K. Notsu   《Ore Geology Reviews》2003,23(3-4):299-339
The Okinawa Trough is a heavily sedimented, rifted back-arc basin formed in an intracontinental rift zone. Submarine hydrothermal activity is located within the six back-arc rifts located in the middle and southern Okinawa Trough and its distribution is controlled principally by tectonic factors. Subduction of the Daito and Gagua Ridges beneath the Ryukyu Arc has resulted in fracturing of the brittle lithosphere beneath the Okinawa Trough. Hydrothermal activity is strongest in the volcanic arc-rift migration phenomenon (VAMP) area plus the JADE site and Southernmost Part of the Okinawa Trough (SPOT) area which form the prolongation of these two ridges. These areas are characterized by extremely high heat flow locally. Submarine hydrothermal fluids from the Okinawa Trough tend to be strongly influenced by interaction of the hydrothermal fluids with organic matter in the sediment resulting in high alkalinity and NH4+ concentrations of the fluids. The fluids also contain high concentrations of CO2 of magmatic origin. Submarine hydrothermal mineralization in the trough is diverse. The CLAM site consists principally of carbonate chimneys. Interaction of the hydrothermal fluid with organic matter in the sediment is particularly strong at this site. This is most probably a sediment-hosted deposit in which sulphide minerals have deposited within the sediment column leaving ‘spent ore-fluids’ to emerge at the seafloor. The JADE site consists of active and inactive sulphide–sulphate chimneys and mounds. The Zn–Pb-rich sulphides at this site contain the highest concentrations of Pb, Ag and Au so far recorded in submarine hydrothermal sulphide deposits. At Minami-Ensei Knoll and Hatoma Knoll, active and inactive chimneys consist principally of anhydrite and barite as a result of phase separation of the hydrothermal fluids beneath the seafloor. An intense black smoker has recently been discovered at Yonaguni Knoll in the SPOT area. If it is confirmed that sulphide mineralization is dominant at this site, this could be a highly prospective area. The most prospective areas for economic-grade minerals in the Okinawa Trough appear to be the JADE site and the SPOT area.  相似文献   
944.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   

945.
The effects of uncertainty due to the variability of soil parameters on the risk of landsliding in the Himalayan region are investigated using a random field model combined with slope stability analyses. Effects of spatial variability both in horizontal and vertical directions, number of test samples, variations in piezometric level and the influence of earthquake on the reliability of a typical slope in a slide area are investigated. The results show that the reliability of slopes in the slide area is significantly affected by the coefficients of variation of soil parameters, spatial variations of soil parameters, number of test samples and piezometric variations. The results also show that the assumption of isotropic variations to assess slope reliability isconservative. The results of the study are useful in providing guidelines and pointing to remedial measures in the form of sub-surface drainage to improve slope reliability in the area.  相似文献   
946.
Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits.The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ε205Tl ranges between −5.1 and +0.1 (ε205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from a standard in parts per 104). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl+ into K+-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.  相似文献   
947.
The chemistry, REE patterns, and carbon and oxygen isotopic compositions of carbonates from ore veins of the Darasun deposit are discussed. In addition to the earlier described siderite, calcite, and carbonates of the dolomite-ankerite series, kutnahorite is identified. The total REE content in Fe-Mg carbonates of the dolomite-ankerite series (2.8–73 ppm) is much lower than in later calcite (18–390 ppm). δ13C of Fe-Mg carbonates and calcite varies from +1.1 to −6.7‰ and from −0.9 to −4.9‰, respectively. δ18O of Fe-Mg carbonates and calcite varies from +17.6 to 3.6‰ and from +15.7 to −0.5‰, respectively. The REE sum and carbon and oxygen isotopic compositions reveal zonal distribution relative to the central granodiorite porphyry stock. The correlation between the carbon and oxygen isotopic compositions and REE sum reflects variations in the physicochemical formation conditions and composition of ore-forming fluid. The isotopic composition of fluid is calculated, and possible sources of its components are considered. Earlier established evidence for a magmatic source of ore-forming fluid and participation of meteoric water in ore formation is confirmed. Geochemical evidence for interaction of ore-forming fluid with host rocks is furnished. The relationships between the REE sum, on the one hand, and carbon and oxygen isotopic compositions of hydrothermal ore-forming fluid, on the other, are established.  相似文献   
948.
The structural evolution at high pressure of a natural 2M 1-phengite [(K0.98Na0.02)Σ=1.00(Al1.55Mg0.24Fe0.21Ti0.02)Σ=2.01(Si3.38Al0.62)O10(OH)2; a = 5.228(2), b = 9.057(3), c = 19.971(6)Å, β = 95.76(2)°; space group: C2/c] from the metamorphic complex of Cima Pal (Sesia Zone, Western Alps, Italy) was studied by single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions up to ~11 GPa. A series of 12 structure refinements were performed at selected pressures within the P range investigated. The compressional behaviour of the same phengite sample was previously studied up to ~25 GPa by synchrotron X-ray powder diffraction, showing an irreversible transformation with a drastic decrease of the crystallinity at P > 15–17 GPa. The elastic behaviour between 0.0001 and 17 GPa was modelled by a third-order Birch–Murnaghan Equation of State (BM-EoS), yielding to K T0 = 57.3(10) GPa and K′ = ?K T0/?P = 6.97(24). The single-crystal structure refinements showed that the significant elastic anisotropy of the 2M 1-phengite (with β(a):β(b):β(c) = 1:1.17:4.60) is mainly controlled by the anisotropic compression of the K-polyhedra. The evolution of the volume of the inter-layer K-polyhedron as a function of P shows a negative slope, Fitting the PV(K-polyhedron) data with a truncated second-order BM-EoS we obtain a bulk modulus value of K T0(K-polyhedron) = 26(1) GPa. Tetrahedra and octahedra are significantly stiffer than the K-polyhedron. Tetrahedra behave as quasi-rigid units within the P range investigated. In contrast, a monotonic decrease is observed for the octahedron volume, with K T0 = 120(10) GPa derived by a BM-EoS. The anisotropic response to pressure of the K-polyhedron affects the P-induced deformation mechanism on the tetrahedral sheet, consisting in a cooperative rotation of the tetrahedra and producing a significant ditrigonalization of the six-membered rings. The volume of the K-polyhedron and the value of the ditrigonal rotation parameter (α) show a high negative correlation (about 93%), though a slight discontinuity is observed at P >8 GPa. α increases linearly with P up to 7–8 GPa (with ?α/?P ≈ 0.7°/GPa), whereas at higher Ps a “saturation plateau” is visible. A comparison between the main deformation mechanisms as a function of pressure observed in 2M 1- and 3T-phengite is discussed.  相似文献   
949.
The thermal history of the south-westernmost Black Forest (Germany) and the adjacent Upper Rhine Graben were constrained by a combination of apatite and zircon fission-track (FT) and microstructural analyses. After intrusion of Palaeozoic granitic plutons in the Black Forest, the thermal regime of the studied area re-equilibrated during the Late Permian and the Mesozoic, interrupted by enhanced hydrothermal activity during the Jurassic. At the eastern flank of the Upper Rhine Graben along the Main Border Fault the analysed samples show microstructural characteristics related to repeated tectonic and hydrothermal activities. The integration of microstructural observations of the cataclastic fault gouge with the FT data identifies the existence of repeated tectonic-related fluid flow events characterised by different thermal conditions. The older took place during the Variscan and/or Mesozoic time at temperatures lower than 280°C, whereas the younger was probably contemporary with the Cenozoic rifting of the Upper Rhine Graben at temperatures not higher than 150°C.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号